
CS 4410
Operating Systems

File System Implementation

Summer 2016

Cornell University

Today

• File allocation

• Unix file system

• Log-structured file system

2

File system: two design problems

• User interface:

– File, directory, attributes, allowed operations.

• Hardware interface:

– Map logical file system onto storage devices.

– Manage free storage space.

• Bit vector,

• Linked list, …

File

• Data of a file is mapped to several blocks in
the storage device.

• For each file, the OS maintains a structure FCB
(file control block) with information about:
– the location of data blocks,

– size,

– permissions,

– owner …

• FCB is stored in yet another block.

Directory

• The main function of a directory is to map the ASCII
name of the file onto the information needed to locate
the data.

• A directory can be implemented as a list of entries.
– Each entry is a pair of an ASCII name and an FCB.

• Every time we open a file, which has not been opened
yet in the system,
– we find its directory and
– search its entry.

• A directory is stored in blocks, too.
• The OS maintains an FSB for each directory.

6

Allocation Methods

● How do we allocate space (blocks) to the

files so that:

● Disk space is utilized effectively.

● Files are accessed quickly.

7

Contiguous Allocation

8

Contiguous Allocation

● Each file occupy a set of contiguous blocks on the disk.

● Minimal disk seeks and seek time.

● The directory entry for each file indicates the address of the starting
block and the number of blocks used.

● It supports both sequential and direct access.

● Difficulty in finding free space.

● Dynamic storage-allocation problem

● External fragmentation

– Solution: Compaction

● Determine space needed for a file.

9

Linked Allocation

10

Linked Allocation

● A file is a linked list of disk blocks.

● The directory entry contains a pointer to the first and last
blocks.

● Each block contains a pointer to the next block.

● They consume space.

● Easy block allocation.

● Effective only for sequentially-access files.

● Solution: Allocate clusters rater than blocks.

● Another Problem: Reliability

11

Indexed Allocation

12

Indexed Allocation

● Bring all the pointers together into the index block.

● The directory entry contains the address of the index
block.

● It keeps the advantages of the Linked Allocation (no
external fragmentation, flexible size-declaration).

● It supports efficient direct access.

● It suffers from wasted space.

● How large should the index block be?

● What happens if the pointers do not fit in one block?

13

Indexed Allocation
● Combined scheme

● Used in UFS

● The directory entry has a pointer to the file's
inode.

● inode = FSB that saves additional 15 pointers.

– 12 pointers point to direct blocks.

– 1 pointer points to single indirect block.

– 1 pointer points to double indirect block.

– 1 pointer points to triple indirect block.

14

The Unix inode

The Unix inode

• If blocks are 4K and block references are 4
bytes ...
– First 48K reachable from the inode.

– Next 4MB available from single-indirect .

– Next 4GB available from double-indirect.

– Next 4TB available through the triple-indirect
block.

• Any block (in 4TB space) can be found at 4 disk
accesses.

Log-structured File System (LFS)

• There is a gap between CPU speeds and disk access times.
• Assumption: Files are cached in main memory.
• So, disk traffic will be dominated by writes.
• Write all new information to disk in a sequential structured called

log.
• This approach increases performance dramatically by eliminating

almost all seeks.
• Permanent storage. No other structure on disk.
• For a log-structured file system to operate efficiently, it must ensure

that there are always large extents of free space available for
writing new data. This is the most difficult challenge.

• Outperforms UFS by an order of magnitude for small writes.
• Matches or exceeds UFS performance for reads and large writes.

LFS

Inode map

Inode

Dir data

File data

root

dir1 file2

file1

Logical file system
Block-level representation

of file system

Disk layout

empty space

always at
the end

LFS: write

• Remember: even if a few bytes of a file are
written/modified, the entire block that
includes these bytes should be
written/modified.

• LFS treats a block that needs to be modified or
written in the same way.

– This block is written at the end of the log
structure.

Assume that file data is modified and becomes . n

n

The inode of that file should change to point to the new data block.

n

The inode of that file is modified…

In turn, the directory, its inode, and the inode map are modified…

n n

n n n n n

always at
the end

n n n n n

Garbage collection

n n n n n

Cleaning (in segments)

Today

• File allocation

• Unix file system

• Log-structured file system

20

Coming up…

• Next lecture: Networking – Introduction

• HW4 is due on Tuesday

• Exam on Thursday

• Office hours moved from today to Tuesday.

