CS 4410
Operating Systems

File System Implementation

Summer 2016

Cornell University

Today

~ile allocation
Unix file system

_Log-structured file system

File system: two design problems

e User interface:

— File, directory, attributes, allowed operations.

 Hardware interface:
— Map logical file system onto storage devices.

— Manage free storage space.

* Bit vector,
* Linked list, ...

File

e Data of a file is mapped to several blocks in
the storage device.

 For each file, the OS maintains a structure FCB
(file control block) with information about:

— the location of data blocks,
— Size,

— permissions,

— owner ...

 FCBis stored in yet another block.

Directory

The main function of a directory is to map the ASCII
name of the file onto the information needed to locate
the data.

A directory can be implemented as a list of entries.
— Each entry is a pair of an ASCIl name and an FCB.

Every time we open a file, which has not been opened
yet in the system,

— we find its directory and
— search its entry.

A directory is stored in blocks, too.
The OS maintains an FSB for each directory.

Allocation Methods

. How do we allocate space (blocks) to the
files so that:

. Disk space is utilized effectively.
. Files are accessed quickly.

Contiguous Allocation

© diractory

count file start length

o0 10 207 300 count 0 2
{

401 5[] 0] 7] :mil :;

8] o ho[J11] ?“ f
tr

121314 hsC]

16117 J18[J18]
mall
20021 Je2[J2a]
24[Jes[2s(270)

list

28 Jea(Jao(J31[]
Lo

N &2 W

Contiguous Allocation

Each file occupy a set of contiguous blocks on the disk.
Minimal disk seeks and seek time.

The directory entry for each file indicates the address of the starting
block and the number of blocks used.

It supports both sequential and direct access.
Difficulty in finding free space.

Dynamic storage-allocation problem
External fragmentation

— Solution: Compaction

Determine space needed for a file.

Linked Allocation

e~ directory
e file start end

jeep 9 25

120 i3 h4f 11501
16 117 ha[11s[]

20J21R2(]23[]
24 JesEtes 27]
28([J29[Jao[J31[]

P

Linked Allocation

. Afileis a linked list of disk blocks.

The directory entry contains a pointer to the first and last
blocks.

Each block contains a pointer to the next block.
They consume space.

Easy block allocation.
Effective only for sequentially-access files.

Solution: Allocate clusters rater than blocks.

. Another Problem: Reliability

Indexed Allocation

craclony
filo inedax bloek
ap 19
9
16
1
10
19 25
-1
it
24 Jzsi2e Tl]
28(Jze[Jso[a1 (]

d,-ﬂ/

Indexed Allocation

Bring all the pointers together into the index block.

. The directory entry contains the address of the index
block.

. It keeps the advantages of the Linked Allocation (no
external fragmentation, flexible size-declaration).

It supports efficient direct access.
It suffers from wasted space.
How large should the index block be?

What happens if the pointers do not fit in one block?

Indexed Allocation

. Combined scheme
. Usedin UFS

. The directory entry has a pointer to the file's
inode.

. inode = FSB that saves additional 15 pointers.

— 12 pointers point to direct blocks.

— 1 pointer points to single indirect block.
— 1 pointer points to double indirect block.
— 1 pointer points to triple indirect block.

The Unix inode

mode

owners (2)

timestamps (3)

data
size block

data
count

data

direct blocks

=

" data
—— F—>{ data] S
single indirect — . :
. data e I
double indrect { [daa |
triple indirect - b_. » data
——»] data

14

The Unix inode

* |f blocks are 4K and block references are 4
bytes ...
— First 48K reachable from the inode.
— Next 4MB available from single-indirect .
— Next 4GB available from double-indirect.

— Next 4TB available through the triple-indirect
block.

* Any block (in 4TB space) can be found at 4 disk
accesses.

Log-structured File System (LFS)

There is a gap between CPU speeds and disk access times.
Assumption: Files are cached in main memory.
So, disk traffic will be dominated by writes.

Write all new information to disk in a sequential structured called
log.

This approach increases performance dramatically by eliminating
almost all seeks.

Permanent storage. No other structure on disk.

For a log-structured file system to operate efficiently, it must ensure
that there are always large extents of free space available for
writing new data. This is the most difficult challenge.

Outperforms UFS by an order of magnitude for small writes.
Matches or exceeds UFS performance for reads and large writes.

LFS

Block-level representation

Logical file system of file system

- Inode map

1 1

' root 1 -

[Inode
e 7 oir g
Cdirl || file2 | oI eare
it B A] File data
f__;L__7
L filel
1 |

Disk layout

empty space

always at
the end

LFS: write

e Remember: even if a few bytes of a file are
written/modified, the entire block that
includes these bytes should be
written/modified.

 LFS treats a block that needs to be modified or

written in the same way.

— This block is written at the end of the log
structure.

Assume that file data - is modified and becomes [] .

The inode of that file should change to point to the new data block.

T

The inode of that file is modified...

In turn, the directory, its inode, and the inode map are modified...

O
always at
the end

Garbage collection

Cleaning (in segments)

W

Today

~ile allocation
Unix file system

| og-structured file system

20

Coming up...

Next lecture: Networking — Introduction
HW4 is due on Tuesday

Exam on Thursday

Office hours moved from today to Tuesday.

