
CS 4410
Operating Systems

Page Replacement (2)

Summer 2016

Cornell University

Today

• Algorithm that approximates the OPT
replacement algorithm.

2

3

Least Recently Used (LRU)
 Page Replacement

● A recently used page is likely to be used again in the future.

● Replace the page that has not been used for the longest
period of time.

● Use the recent past as an approximation of the near future.

Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

5 1

2

3

4

5

3

4

Distinguish recently used from
not recently used pages

• Counters
– Each page-table entry is associated with a time-of-use field.
– Add to the CPU a logical clock.

• The clock is incremented at every memory access.

– At every memory access, the field of the referenced page is
updated with the clock.

– Scan the page table to find the LRU page.

• Stack
– Whenever a page is referenced, it is removed from the stack

and put on the top.
– The LRU page is always at the bottom.
– The update is expensive.

5

LRU: Clock Algorithm

● Each page entry is associated with a reference bit.

● Set on use, reset periodically by the OS.

● Algorithm:

● Scan: if ref bit is 1, set to 0, and proceed. If ref bit is 0, stop and evict.

● Problem:

● Low accuracy for large memory
R=1

R=0

R=1

R=1

R=1
R=0

R=0

R=1

R=0

R=0

R=1

6

LRU: Clock Algorithm

● Solution: Add another hand

● Leading edge clears ref bits

● Trailing edge evicts pages with ref bit 0

● What if angle small?

● What if angle big?

R=1
R=0

R=1

R=1

R=1
R=0

R=0

R=1

R=0

R=0

R=1

7

Global vs Local Allocation

● Global replacement

● Single memory pool for entire system.

● On page fault, evict oldest page in the system.

● Problem: lack of performance isolation.

● Local (per-process) replacement

● Have a separate pool of pages for each process.

● Page fault in one process can only replace pages from its
own process.

● Problem: might have idle resources.

8

Thrashing

● Excessive rate of page replacement

● Keep throwing out page that will be referenced soon.

● Keep referencing pages that are not in memory.

● Why does it occur?

● Too many processes in the system.

● How can we solve this problem?

● Locality model of process execution.

– A locality is a set of pages that are actively used together.

9

Working Set

● Estimate locality → Identify useful pages → Do not evict
these pages, because they are likely to be referenced again.

● Working Set = An approximation of the program's locality.

● The set of pages in the most recent Δ page references.

● Δ: working-set window

● As a process executes, it moves from locality to locality.

● Example (Δ = 10):

● t1 → WS = {1,2,5,6,7}

● t2 → WS = {3,4}

● If allocated frames do not accommodate current locality, the
process will thrash.

Computing the working set

• Working set = sets of pages in the working set
window.

• Difficulty: the working set window is a moving
window. At each memory reference:

– a new reference appears at one end -> the
corresponding page should be marked as a
member of the working set.

– The oldest reference drops off the other end ->
the corresponding page should be unmarked.

Computing the working set
… 2 6 1 5 7 7 7 7 5 1 6 2 3 4 1 2 3 4 4 4 3 4 3 4 4 4 1 3 2 3 4 4 4 3 4 4 4 …

t1

Δ

ti WS

t1 {1,2,5,6,7}

t2 {1,5,6,7}

t3 {1,2,5,6,7}

t4 {1,2,3,5,6,7}

t5 {1,2,3,4,5,6,7}

Δ=10

 t2 t3 t4 t5

How can we compute WS
• without recording the reference

history, but
• with specialized bits associated to

page table entries?
• These bits signify whether a

page belongs to the WS.

Computing the working set

• Each page table entry is associated with 1 reference bit and
Δ WS-bits.

• At every page reference:
– Set the corresponding reference bit to 1.
– Update the working set:

• Shift WS-bits one bit to the right.
• Put reference bit to the most significant WS-bit.

– Reset reference bits to 0.

• If some WS-bits of a page are set to 1, then the page
belongs to the WS.

• If all WS-bits of a page are 0, then the page does not belong
to WS.
– This page can be evicted.

Computing the working set
… 2 6 1 5 7 7 7 7 5 1 6 2 3 4 1 2 3 4 4 4 3 4 3 4 4 4 1 3 2 3 4 4 4 3 4 4 4 …

t1

Δ

Δ=10

 t2 t3 t4 t5

Page number WS-bits after access ti

t1 t2 t3 t4 t5

1

2

3

4

5

6

7

WS

Computing the working set
… 2 6 1 5 7 7 7 7 5 1 6 2 3 4 1 2 3 4 4 4 3 4 3 4 4 4 1 3 2 3 4 4 4 3 4 4 4 …

t1

Δ

Δ=10

 t2 t3 t4 t5

Page number WS-bits after access ti

t1 t2 t3 t4 t5

1 1000000100 0100000010 0010000001 0001000000 0000100000

2 0000000001 0000000000 1000000000 0100000000 0010000000

3 0000000000 0000000000 0000000000 1000000000 0100000000

4 0000000000 0000000000 0000000000 0000000000 1000000000

5 0100001000 0010000100 0001000010 0000100001 0000010000

6 0000000010 1000000001 0100000000 0010000000 0001000000

7 0011110000 0001111000 0000111100 0000011110 0000001111

WS {1,2,5,6,7} {1,5,6,7} {1,2,5,6,7} {1,2,3,5,6,7} {1,2,3,4,5,6,7}

15

Working Set Approximation

● It is expensive to update the WS at every page reference.

● We can approximate the WS by updating it after Δ/n
references.

● Need n WS-bits per page table entry.

● After Δ/n references there will be an interrupt.

● At every page reference:

● Set the corresponding reference bit to 1.

● At every interrupt:

● Update the working set:

– Shift WS-bits one bit to the right.

– Put reference bit to the most significant WS-bit of each page.

● Reset reference bits to 0.

Working Set Approximation
… 2 6 1 5 7 7 7 7 5 1 6 2 3 4 1 2 3 4 4 4 3 4 3 4 4 4 1 3 2 3 4 4 4 3 4 4 4 …

t1

Δ

Δ=10, n=5

 t2 t3 t4 t5

Page number WS-bits after access ti

t1 t3 t5

1

2

3

4

5

6

7

WS

Working Set Approximation
… 2 6 1 5 7 7 7 7 5 1 6 2 3 4 1 2 3 4 4 4 3 4 3 4 4 4 1 3 2 3 4 4 4 3 4 4 4 …

t1

Δ

Δ=10, n=5

 t2 t3 t4 t5

Page number WS-bits after access ti

t1 t3 t5

1 10010 01001 00100

2 00001 10000 01000

3 00000 00000 10000

4 00000 00000 10000

5 10010 01001 00100

6 00001 10001 01000

7 01100 00110 00011

WS {1,2,5,6,7} {1,2,5,6,7} {1,2,3,4,5,6,7}

18

Page Fault Frequency

● PFF = page faults / instructions executed.

● If PFF rises above threshold, process needs more memory.

● Not enough memory on the system? → Swap out.

● If PFF sinks below threshold, memory can be taken away.

19

Working Sets and Page Fault Rates

P
a
g
e

 fa
u

lt ra
te

transition

Working set

stable

Today

• Algorithm that approximates the OPT
replacement algorithm.

20

Coming up…

• Next lecture: Review

• HW3: due today

• Exam2: Wednesday, last 30mis of class

