CS 4410
Operating Systems

Page Replacement (2)

Summer 2016

Cornell University

Today

e Algorithm that approximates the OPT
replacement algorithm.

Least Recently Used (LRU)
Page Replacement

A recently used page is likely to be used again in the future.

Replace the page that has not been used for the longest
period of time.

Use the recent past as an approximation of the near future.

Reference string: 1,2,3,4,1,2,5,1,2,3,4,5

5

e N S I \C R
o1
N

Distinguish recently used from
not recently used pages

* Counters
— Each page-table entry is associated with a time-of-use field.
— Add to the CPU a logical clock.

* The clock is incremented at every memory access.

— At every memory access, the field of the referenced page is
updated with the clock.

— Scan the page table to find the LRU page.

e Stack

— Whenever a page is referenced, it is removed from the stack
and put on the top.

— The LRU page is always at the bottom.
— The update is expensive.

LRU: Clock Algorithm

. Each page entry is associated with a reference bit.
. Set on use, reset periodically by the OS.
. Algorithm:

Scan: if ref bitis 1, set to 0, and proceed. If ref bit is 0, stop and evict.

. Problem:

Low accuracy for large memory

LRU: Clock Algorithm

. Solution: Add another hand

. Leading edge clears ref bits

. Trailing edge evicts pages with ref bit 0

. What if angle small?

. What if angle big?

Global vs Local Allocation

. Global replacement

. Single memory pool for entire system.
. On page fault, evict oldest page in the system.

Problem: lack of performance isolation.
. Local (per-process) replacement

. Have a separate pool of pages for each process.

Page fault in one process can only replace pages from its
Oown process.

Problem: might have idle resources.

Thrashing

. Excessive rate of page replacement

. Keep throwing out page that will be referenced soon.

. Keep referencing pages that are not in memory.
. Why does it occur?

. Too many processes in the system.
. How can we solve this problem?

. Locality model of process execution.

— Alocality is a set of pages that are actively used together.

Working Set

Estimate locality - ldentify useful pages - Do not evict
these pages, because they are likely to be referenced again.

Working Set = An approximation of the program'’s locality.

The set of pages in the most recent A page references.

A: working-set window

As a process executes, it moves from locality to locality.

Example (A = 10):
t1 > WS = {1,2,5,6,7}
t2 > WS ={3,4}

page reference table

...2615777751623412344434344413234443444...

IS RS
| |
r] r2

WS(t,) = {1.2,5,6,7} WS(t,) = {34}

If allocated frames do not accommodate current locality, the

process will thrash.

Computing the working set

* Working set = sets of pages in the working set
window.

e Difficulty: the working set window is a moving
window. At each memory reference:

— a new reference appears at one end -> the
corresponding page should be marked as a
member of the working set.

— The oldest reference drops off the other end ->
the corresponding page should be unmarked.

Computing the working set
..261577775 'T’,Tl12344434344413234443444... A=10
t

1
-
t1 3t41t5

2

|

-+ >
o (@)

ti W5 How can we compute WS

t1 {1,2,56,7} without recording the reference
t2 |{1,56,7} history, but

t3 {1;2151617}

* with specialized bits associated to
page table entries?
* These bits signify whether a
page belongs to the WS.

t4 [{1,2,3,5,6,7}
t5 [{1,2,3,4,5,6,7}

Computing the working set

Each page table entry is associated with 1 reference bit and
A WS-bits.
At every page reference:

— Set the corresponding reference bit to 1.

— Update the working set:
* Shift WS-bits one bit to the right.
* Put reference bit to the most significant WS-bit.

— Reset reference bits to 0.

If some WS-bits of a page are set to 1, then the page
belongs to the WS.

If all WS-bits of a page are 0, then the page does not belong
to WS.

— This page can be evicted.

Computing the working set

..261577775

&
N

Page number

N o o AN

1623412344434344413234443444... A=10
{171
t1 t2t3t41t5
WS-bits after access ti
t1 t2 t3 t4 t5

Computing the working set

261577775162 3412344434344413234443444... A=10
111]
t|1 t2t3t4t5
Page number WS-bits after access ti
tl t2 t3 t4 t5

1 1000000100 | 0100000010 | 0010000001 | 0001000000 | 0000100000
2 0000000001 | 0000000000 | 1000000000 |0100000000 |0010000000
3 0000000000 | 0000000000 | 0000000000 | 1000000000 | 0100000000
4 0000000000 | 0000000000 | 0000000000 | 0000000000 | 1000000000
5 0100001000 | 0010000100 |0001000010 |0000100001 |0000010000
6 0000000010 | 1000000001 | 0100000000 |0010000000 |0001000000
7 0011110000 |0001111000 |0000111100 |0000011110 |0000001111

WS {1,2,5,6,7} {1,5,6,7} {1,2,5,6,7} {1,2,3,5,6,7} |1{1,2,3,4,5,6,7}

Working Set Approximation

It is expensive to update the WS at every page reference.

We can approximate the WS by updating it after A/n
references.

Need n WS-bits per page table entry.

After A/n references there will be an interrupt.

At every page reference:
Set the corresponding reference bit to 1.
At every interrupt:

Update the working set:
— Shift WS-bits one bit to the right.

— Put reference bit to the most significant WS-bit of each page.

Reset reference bits to O. 15

Working Set Approximation

261577775162 3412344434344413234443444... A=10,n=5
-
t|1t2t3t4t5
Page number WS-bits after access ti
tl t3 t5
1
2
3
4
5
6
7
WS

Working Set Approximation

..2615777751
-

t1

-+ >
o (@)

Page number

2

|

i

3t41t5

412344434344413234443444..

WS-bits after access ti

tl t3 t5
1 10010 01001 00100
2 00001 10000 01000
3 00000 00000 10000
4 00000 00000 10000
5 10010 01001 00100
6 00001 10001 01000
7 01100 00110 00011
WS {1,2,5,6,7} {1,2,5,6,7} {1,2,3,4,5,6,7}

A=10, n=5

Page Fault Frequency

. PFF = page faults / instructions executed.

. |If PFF rises above threshold, process needs more memory.
Not enough memory on the system? - Swap out.

. |If PFF sinks below threshold, memory can be taken away.

I

increase number
of frames

upper bound

page-fault rate

lower bound
decrease number
of frames

number of frames

Working Sets and Page Fault Rates

Working set

aJel) ne} abed

19

Today

e Algorithm that approximates the OPT
replacement algorithm.

20

Coming up...

* Next lecture: Review
* HW3: due today
* Exam2: Wednesday, last 30mis of class

