
CS 4410
Operating Systems

Condition variables

Summer 2016

Cornell University

Today

• Monitors

• Condition variables

• Solving classic problems with monitors

Predicates on shared data

• The restrictions imposed on when threads can
access shared data are predicates on shared data.
– Statements on shared data that are either true or false.

– Examples: IsBufferEmpty?, AreThereActiveReaders?

• Threads coordinate their access to shared data
based on these predicates.
– A thread may need to check this predicate before

continuing execution.

– The execution of another thread may change the truth
value of this predicate.

Encoding predicates with semaphores

Semaphores can encode any predicate, but

• we need to find the right initialization,

• we may need to use multiple semaphores and
variables,

• they are low-level and thus error-prone.

Monitor

• A data abstraction mechanism,
which consists of:
– state and
– procedures.

• The state is modeled by shared
variables.

• The procedures are the only
means by which the state is
manipulated.

• Mutual exclusion: only one
thread can execute a monitor
procedure at any time.

Monitor monitor_name

{

 // shared variable declarations

 procedure P1(. . .) { . . . }

 . . .

 procedure PN(. . .) { . . . }

 initialization_code(. . .) { . . . }

}

Condition variables

• In a monitor, condition synchronization is
explicitly programmed using condition
variables.

• The programmer implicitly associates
(encodes) a predicate on shared state with a
condition variable c.

• The value of c is a queue of threads that wait
for the corresponding predicate to become
true.

Condition variables

• When c’s predicate is false call wait(c):

– block thread and add it in c’s queue.

• When c’s predicate becomes true call signal(c):

– awake the first thread in c’s queue and remove it form
the queue.

• Signal-and-continue semantics:

– The awaken thread executes at some point in the future
(when it reacquires exclusive access to the monitor).

– The thread executing signal continues executing.

8

Synchronization Using Monitors

initialization code

shared data

operations

...

entry queue

x

y

9

A Simple Monitor
Monitor EventTracker {

 int numburgers = 0;

 condition hungrycustomer;

 void customerenter() {

 while (numburgers == 0)

 hungrycustomer.wait()

 numburgers -= 1

 }

 void produceburger() {

 ++numburgers;

 hungrycustomer.signal();

 }

}

10

Readers and Writers
 Void BeginRead(){

 if(NWriters == 1 || WaitingWriters > 0)

 {

 ++WaitingReaders;

 Wait(CanRead);

--WaitingReaders;

 }

 ++NReaders;

 Signal(CanRead);}

 Void EndRead(){

 if(--NReaders == 0)

 Signal(CanWrite);}

}

Monitor ReadersNWriters {

 int NReaders, Nwriters;
 Condition CanRead, CanWrite;

 Void BeginWrite() {
 if(NWriters == 1 || NReaders > 0)
 {
 ++WaitingWriters;
 wait(CanWrite);
 --WaitingWriters;
 }
 NWriters = 1;
 }

 Void EndWrite()
 {
 NWriters = 0;
 if(WaitingReaders)
 Signal(CanRead);
 else
 Signal(CanWrite);
 }

11

Readers and Writers
 Void BeginRead(){

 if(NWriters == 1 || WaitingWriters > 0)

 {

 ++WaitingReaders;

 Wait(CanRead);

--WaitingReaders;

 }

 ++NReaders;

 Signal(CanRead);}

 Void EndRead() {

 if(--NReaders == 0)

 Signal(CanWrite); }

}

Monitor ReadersNWriters {

 int NReaders, NWriters;
 Condition CanRead, CanWrite;

 Void BeginWrite()
 {
 if(NWriters == 1 || NReaders > 0)
 {
 ++WaitingWriters;
 wait(CanWrite);
 --WaitingWriters;
 }
 NWriters = 1;
 }

 Void EndWrite()
 {
 NWriters = 0;
 if(WaitingReaders)
 Signal(CanRead);
 else
 Signal(CanWrite);
 }

12

Readers and Writers
 Void BeginRead(){

 while(NWriters == 1)

 {

 Wait(CanRead);

 }

 ++NReaders;

 }

 Void EndRead(){

 --NReaders

 }

}

Monitor ReadersNWriters {

 int NReaders, NWriters;
 Condition CanRead, CanWrite;

 Void BeginWrite(){
 while(NWriters == 1 || NReaders > 0)
 {

 wait(CanWrite);

 }
 NWriters = 1; }

 Void EndWrite(){
 NWriters = 0;

 }

13

Readers and Writers
 Void BeginRead(){

 while(NWriters == 1)

 {

 Wait(CanRead);

 }

 ++NReaders;

 Signal(CanRead);}

 Void EndRead(){

 if(--NReaders == 0)

 Signal(CanWrite); }

}

Monitor ReadersNWriters {

 int NReaders, NWriters;
 Condition CanRead, CanWrite;

 Void BeginWrite(){
 while(NWriters == 1 || NReaders > 0)
 {

 wait(CanWrite);

 }
 NWriters = 1; }

 Void EndWrite(){
 NWriters = 0;

 Signal(CanRead);

 Signal(CanWrite);}

Semaphores VS Condition variables

• wait(c) is like P(S), and signal(c) is like V(S).

• However:

– signal has no effect if no thread is waiting, but V
has.

– wait always blocks a thread, P does not.

Synchronization primitives

• All can encode any predicate on shared data.

• Each primitive can be used to implement
another primitive.

Locks
(acquire, release)

Semaphores
(init, P, V)

Condition Variables
(wait, signal)

Decreasing programming effort to
encode predicates

Monitors in Python

Today

• Monitors

• Condition variables

• Solving classic problems with monitors

• [1] Concurrent programming: principles and
practice, Gregory R. Andrews

• [2] Implementing condition variables with
semaphores, Andrew Birrell

Coming up…

• Next lecture: deadlocks

• HW2: all excersises

– Due on Monday, 10pm

• In-class exam

– Tuesday, last N mins of class

– Based on HW1 and HW2

