CS 4410
Operating Systems

Condition variables

Summer 2016

Cornell University

Today

* Monitors
* Condition variables
* Solving classic problems with monitors

Predicates on shared data

* The restrictions imposed on when threads can
access shared data are predicates on shared data.

— Statements on shared data that are either true or false.
— Examples: IsBufferEmpty?, AreThereActiveReaders?

e Threads coordinate their access to shared data
based on these predicates.

— A thread may need to check this predicate before
continuing execution.

— The execution of another thread may change the truth
value of this predicate.

Encoding predicates with semaphores

Semaphores can encode any predicate, but
* we need to find the right initialization,

* we may need to use multiple semaphores and
variables,

e they are low-level and thus error-prone.

Monitor

A data abstraction mechanism,
which consists of:

— state and Monitor monitor_name

— procedures. {

The state iS mOdeIed by Shared // shared variable declarations
Variables' procedure P1(..) { ...}
The procedures are the only

means by which the state is procedure PN(..){ ...
ma nipu Iated . initialization_code(...){ ...}

Mutual exclusion: only one

thread can execute a monitor
procedure at any time.

Condition variables

* |[n a monitor, condition synchronization is
explicitly programmed using condition
variables.

 The programmer implicitly associates

(encodes) a predicate on shared state with a
condition variable c.

 The value of cis a queue of threads that wait
for the corresponding predicate to become
true.

Condition variables

 When c’s predicate is false call wait(c):
— block thread and add it in ¢’s queue.

* When c’s predicate becomes true call signal(c):

— awake the first thread in ¢’s queue and remove it form
the queue.

* Signal-and-continue semantics:

— The awaken thread executes at some point in the future
(when it reacquires exclusive access to the monitor).

— The thread executing signal continues executing.

Synchronization Using Monitors

entry queue

A Simple Monitor

Monitor EventTracker {
int numburgers = O;
condition hungrycustomer:;

void customerenter() {
while (numburgers == 0)
hungrycustomer.wait()
numburgers -= 1

}

void produceburger() {
++numburgers;
hungrycustomer.signal();

}
}

Readers and Writers

Monitor ReadersNWriters { Void BeginRead(){

int NReaders, Nwriters:
Condition CanRead, CanWrite;

Void BeginWrite() {

} }

Void EndWrite() Void EndRead(){
{

10

Readers and Writers

Monitor ReadersNWriters { Void BeginRead(){

int NReaders, NWriters:
Condition CanRead, CanWrite;

Void BeginWrite()

{
++NReaders;
NWriters = 1; }
}
Void EndWrite() Void EndRead() {
{ --NReaders

NWriters = O;

11

Readers and Writers

Monitor ReadersNWriters { Void BeginRead(){

: : while(NWriters == 1)
int NReaders, NWriters:

Condition CanRead, CanWrite; {
Void BeginWrite(){
while(NWriters == 1 || NReaders > 0) Wait(CanRead);
{
wait(CanWrite);)
} ++NReaders;
NWriters = 1; } }
Void EndWrite(){
NWriters = O; _
Void EndRead(){
--NReaders
} }

12

Readers and Writers

Monitor ReadersNWriters { Void BeginRead(){

: : while(NWriters == 1)
int NReaders, NWriters:

Condition CanRead, CanWrite; {
Void BeginWrite(){
while(NWriters == 1 || NReaders > 0) Wait(CanRead);
{
wait(CanWrite);)
} ++NReaders;
NWriters = 1; }

Signal(CanRead);}
Void EndWrite(){

NWriters = 0; :

Void EndRead(){
Signal(CanRead); if(--NReaders == 0)
Signal(CanWrite);} Signal(CanWrite); }

Semaphores VS Condition variables

e wait(c) is like P(S), and signal(c) is like V(S).
* However:

— signal has no effect if no thread is waiting, but V
has.

— wait always blocks a thread, P does not.

Synchronization primitives

Decreasing programming effort to
encode predicates

Locks Semaphores Condition Variables
(acquire, release) (init, P, V) (wait, signal)

* All can encode any predicate on shared data.

e Each primitive can be used to implement
another primitive.

Monitors in Python

lcelass EventTracker:

| def init (=3elf):
self.hungrycustomer lock = Lock()
| self.hungrycustomer = Condition(self.hungrycustomer lock)

gelf .mumburgers = 0

| def customerenter(=zelf):

| with self.hungrycustomer lock:
while =self.numburgers =— 0
gelf.hungryvcustomer.wait ()
fcheck if indeed there i=s a burger
assert(self.numburgers > 0)
gelf.numburgers —= 1

| with self.hungrycustomer lock:
gelf.numburgers 4= 1
gelf.hungryvcustomer.notifv ()

Today

Monitors
Condition variables
Solving classic problems with monitors

[1] Concurrent programming: principles and
practice, Gregory R. Andrews

[2] Implementing condition variables with
semaphores, Andrew Birrell

Coming up...

e Next lecture: deadlocks

e HW2: all excersises
— Due on Monday, 10pm

* |In-class exam

— Tuesday, last N mins of class
— Based on HW1 and HW?2

