Project 1
Non-Preemptive Multitasking

Ege Mihmanli

Department of Computer Science
Cornell University

September 2, 2016



First things first

* Welcome to PortOS
* Project 1 is already released!

* Due on September 19t at 11:59pm

02/09/2016 Cornell University



GitHub

* We are using github.coecis.cornell.edu

* Sign in with Cornell credentials, i.e netID and password

* Projects released and submitted on GitHub

02/09/2016 Cornell University



https://github.coecis.cornell.edu/

Goals

* Ramp up for C and PortOS
* Learn how threading works
* Implement synchronization primitives

* Large project = bad coding style WILL bite later

02/09/2016 Cornell University



Project Overview

Semaphore Minithreads

02/09/2016 Cornell University



Project Overview

Semaphore Minithreads

02/09/2016 Cornell University



Queues

e Simple FIFO Queue
* Interface described in queue.h
e Use a linked list under the hood

* Prepend, append and dequeue must be O(1)

02/09/2016 Cornell University



Project Overview

Semaphore Minithreads

02/09/2016 Cornell University



What is a semaphore?

* Pillar of concurrent programming
e Actually, just another data structure
* Keeps a count

 Blocks/wakes up threads depending on situation

02/09/2016 Cornell University



Cornell University

O
S
@
<
o
©
-
O
g
©
D
D
e
_l

02/09/2016




Students = Threads

* Bouncers = Semaphore

* Legal max capacity—> Count

* Room space = Shared resource

Line = Blocked threads

02/09/2016 Cornell University 11




Concurrency 101

* Client decides how many threads can hold a semaphore (count)

* Counter is incremented/decremented atomically

e PL&VHDT

e P blocks if count ==

* \V wakes up blocked thread if count ==

02/09/2016 Cornell University

12



career fair.c

take_shower();

get dressed();

sweat_a lot _on_your_way over();
semaphore_p(); //attempt to walk in
talk_to_employers();

exaggerate _resume();

get_swag();

semaphore_v(); //walk out
complain_about_career_fair();

02/09/2016 Cornell University

13



02/09/2016

Project Overview

Semaphore Minithreads

Cornell University

14



02/09/2016

Minithreads

Process

User Threads

Scheduler

Kernel Thread

Cornell University

15



Scheduler

* First come first serve
e Just yield CPU to thread at the head of queue
* Expect this to get more complicated in Project 2

* Code style matters

02/09/2016 Cornell University

16



Minithreads

e What we call threads in PortOS
* Majority of the project

 Will need a Thread Control Block

» Stack top pointer
 stack base pointer

* thread ID

* Anything else you want

02/09/2016 Cornell University

17



Useful functions

* We provide some functions we found useful
* Allocate stack = minithread_allocate_stack
* Initialize stack = minithread _initialize_stack
 Switching between threads = minithread switch

* Make sure to read machineprimitives.h

02/09/2016 Cornell University

18



02/09/2016

minithread switch

old_thread_sp esp

Cornell University

new_thread_sp

state

19



minithread switch

old_thread_sp esp new_thread_sp

|

state

state

02/09/2016 Cornell University




02/09/2016

minithread switch

old_thread_sp

state

Cornell University

esp

new_thread_ sp

state

21



02/09/2016

minithread switch

old_thread_sp esp

state

Cornell University

new_thread_sp

22



Bootstrapping
vold minithread system 1nitialize
* This bootstraps the system

e Use it to initialize queues, semaphores, global variables or data
structures

* You will add more in projects to come

02/09/2016 Cornell University

23



Bootstrapping

 What happens when there is no user thread left?
e System shouldn’t crash! It’s an operating system
* Run the idle thread
* Only place where polling is OK!

* |n our case, the kernel thread is the idle thread

* No need to allocate stack for it

02/09/2016 Cornell University

24



Being Non-Preemptive

* What happens when a user thread runs forever?

* In P1, we let it be!

* Assume that all threads are good and voluntarily yield

* Threads yield by calling minithread_yield

02/09/2016 Cornell University

25



02/09/2016

Life of @ minithread
@ ®

minithread yield() whenbody proc returns, epilogue code
final proc(args)isimmediately
thread gives up control of CPU called. This code should wake up the

cleanup thread to free the stack and TCB.

another thread yield§ and this A context switch should be made to the
thread resumes execution again nextrunnable thread.

control resumes from instruction
afterminithread yield()

I { ‘l'

®mini thread fork(body proc, args)

thread terminates by executing
thread starts, body proc(args)is called. return from within body proc.

Cornell University 26



Testing

* We supply a few primitive tests

e Use it to see how minithreads work
* Sieve and buffer are good stress tests

* Remove ALL of your print statements and dead code before
submission!

02/09/2016 Cornell University

27



Coding Style

* Avoid unnecessary polling

while (condition == False)
minithread yield();

* Unnecessary context switches are bad for you

e Check for NULL arguments! (malloc can return NULL)

02/09/2016 Cornell University

28



Commenting

* Helps us understand your code

* Helps you understand your code

* Helps you notice bugs

* Helps us give partial credit for buggy cod

* Notice all the “helps”? Commenting is good!

02/09/2016 Cornell University

29



Coding Style
* Naming convention is important
* Underscores to delimit words:

* minithread switch

* number_of eges
* Constants in ALL_CAPS

02/09/2016 Cornell University

30



Coding in C

e Can’t really say “I know C” without mastering pointers
int *int_ptr = (int*) malloc(sizeof(int));
int_ptr =5;

 What does this do?

02/09/2016 Cornell University

31



Files you need to change

e queue.c/h

* synch.c/h

* minithread.c/h

* Important: you don’t have to change header files!

* DO NOT CHANGE ANY OTHER FILE

02/09/2016 Cornell University

32



int thread3(int* arg) {
printf("Thread 3.\n");

9;
}

int thread2(int* arg) {
minithread fork(thread3, NULL);
printf("Thread 2.\n");
minithread yield();

9;

02/09/2016 Cornell University

int threadl(int* arg) {
minithread_ fork(thread2, NULL);
printf("Thread 1.\n");
minithread yield();
minithread yield();

9;

main(int argc, char * argv[]) {
minithread _system initialize(threadl, NULL);
0;




02/09/2016

Cornell University

34



