
Project 1
Non-Preemptive Multitasking

Ege Mihmanli

Department of Computer Science

Cornell University

September 2, 2016



First things first

• Welcome to PortOS

• Project 1 is already released!

• Due on September 19th at 11:59pm

02/09/2016 Cornell University 2



GitHub

• We are using github.coecis.cornell.edu

• Sign in with Cornell credentials, i.e netID and password

• Projects released and submitted on GitHub

02/09/2016 Cornell University 3

https://github.coecis.cornell.edu/


Goals

• Ramp up for C and PortOS

• Learn how threading works

• Implement synchronization primitives

• Large project  bad coding style WILL bite later

02/09/2016 Cornell University 4



Project Overview

02/09/2016 Cornell University 5

Queue Semaphore Minithreads



Project Overview

02/09/2016 Cornell University 6

Queue Semaphore Minithreads



Queues

• Simple FIFO Queue

• Interface described in queue.h

• Use a linked list under the hood

• Prepend, append and dequeue must be O(1)

02/09/2016 Cornell University 7



Project Overview

02/09/2016 Cornell University 8

Queue Semaphore Minithreads



What is a semaphore?

• Pillar of concurrent programming

• Actually, just another data structure

• Keeps a count

• Blocks/wakes up threads depending on situation

02/09/2016 Cornell University 9



This is a semaphore

02/09/2016 Cornell University 10



Let’s make the analogy work

• Students  Threads

• Bouncers  Semaphore

• Legal max capacity Count

• Room space  Shared resource

• Line  Blocked threads

02/09/2016 Cornell University 11



Concurrency 101

• Client decides how many threads can hold a semaphore (count)

• Counter is incremented/decremented atomically

• P ↓ & V ↑

• P blocks if count == 0

• V wakes up blocked thread if count == 0

02/09/2016 Cornell University 12



career_fair.c

take_shower();
get_dressed();
sweat_a_lot_on_your_way_over();
semaphore_p(); //attempt to walk in
talk_to_employers();
exaggerate_resume();
get_swag();
semaphore_v(); //walk out
complain_about_career_fair();

02/09/2016 Cornell University 13



Project Overview

02/09/2016 Cornell University 14

Queue Semaphore Minithreads



Minithreads

02/09/2016 Cornell University 15

Scheduler

Kernel Thread

Process
User Threads



Scheduler

• First come first serve

• Just yield CPU to thread at the head of queue

• Expect this to get more complicated in Project 2

• Code style matters

02/09/2016 Cornell University 16



Minithreads

• What we call threads in PortOS

• Majority of the project

• Will need a Thread Control Block

• Stack top pointer

• stack base pointer

• thread ID

• Anything else you want

02/09/2016 Cornell University 17



Useful functions

• We provide some functions we found useful

• Allocate stack minithread_allocate_stack

• Initialize stack minithread_initialize_stack

• Switching between threads minithread_switch

• Make sure to read machineprimitives.h

02/09/2016 Cornell University 18



minithread_switch

02/09/2016 Cornell University 19



minithread_switch

02/09/2016 Cornell University 20



minithread_switch

02/09/2016 Cornell University 21



minithread_switch

02/09/2016 Cornell University 22



Bootstrapping

• This bootstraps the system

• Use it to initialize queues, semaphores, global variables or data 
structures

• You will add more in projects to come

02/09/2016 Cornell University 23

void minithread_system_initialize



Bootstrapping

• What happens when there is no user thread left?

• System shouldn’t crash! It’s an operating system

• Run the idle thread

• Only place where polling is OK!

• In our case, the kernel thread is the idle thread

• No need to allocate stack for it

02/09/2016 Cornell University 24



Being Non-Preemptive

• What happens when a user thread runs forever?

• In P1, we let it be!

• Assume that all threads are good and voluntarily yield

• Threads yield by calling minithread_yield

02/09/2016 Cornell University 25



Life of a minithread

02/09/2016 Cornell University 26



Testing

• We supply a few primitive tests

• Use it to see how minithreads work

• Sieve and buffer are good stress tests

• Remove ALL of your print statements and dead code before 
submission!

02/09/2016 Cornell University 27



Coding Style

• Avoid unnecessary polling

while (condition == False)

minithread_yield();

• Unnecessary context switches are bad for you

• Check for NULL arguments! (malloc can return NULL)

02/09/2016 Cornell University 28



Commenting

• Helps us understand your code

• Helps you understand your code

• Helps you notice bugs

• Helps us give partial credit for buggy cod

• Notice all the “helps”? Commenting is good!

02/09/2016 Cornell University 29



Coding Style

• Naming convention is important

• Underscores to delimit words:

• minithread_switch

• number_of_eges

• Constants in ALL_CAPS

02/09/2016 Cornell University 30



Coding in C

• Can’t really say “I know C” without mastering pointers

int *int_ptr = (int*) malloc(sizeof(int));

int_ptr = 5;

• What does this do?

02/09/2016 Cornell University 31



Files you need to change

• queue.c/h

• synch.c/h

• minithread.c/h

• Important: you don’t have to change header files!

• DO NOT CHANGE ANY OTHER FILE

02/09/2016 Cornell University 32



02/09/2016 Cornell University 33



?

02/09/2016 Cornell University 34


