
[20pts]		5.	Network	Routing

Depicted	is	a	tiny	part	of	the	Internet	with	three	routers	R1,	R2,	and	R3,	and	six	bi-directional	links,	L1,	L2,	L3,	L1-2,	L2-3,
L1-3.		Also	shown	are	the	routing	tables	of	each	of	the	three	routers.		Each	row	shows	an	IP	address	prefix	and	the	
corresponding	outgoing	link.		Recall	that	/16	stands	for	a	netmask 255.255.0.0	(i.e.,	the	only	the	first	16	bits	are	
significant),	and	/24	stands	for	a	netmask 255.255.255.0.		Also	recall	that	each	IP	datagram	(aka	packet)	has	a	source	
address,	a	destination	address,	and	a	TTL	(Time-To-Live,	usually	used	as	a	maximum	hop	count).		For	simplicity,	assume	
there	are	four	types	of	IP	datagram:		TCP,	UDP,	TIME_EXCEEDED,	and	UNREACHABLE.	

When	a	datagram	arrives	at	a	router,	the	router	first	checks	if	the	destination	address	matches	an	entry	in	the	
routing	table.		If	so	and	the	TTL	>	0,	then	the	router	decrements	the	TTL	and	forwards	the	datagram	to	the	outgoing	link	
in	the	entry.		If	not,	there	are	two	cases.		If	the	datagram	type	is	not	UDP	or	TCP,	then	the	router	simply	drops	the	
datagram.		Otherwise	the	router	swaps	the	source	and	destination	address	in	the	datagram	and	sets	the	TTL	to	100.		It	
sets	the	type	to	UNREACHABLE	if	there	was	no	match	in	the	routing	table,	or	to	TIME_EXCEEDED	otherwise.		It	then	
treats	the	datagram	as	if	it	had	just	arrived.

8

Router	R1

Prefix Outgoing	Link

132.43/16 L1-3

84.128/16 L1

84.128.33/24 L1-2

R1 R2

R3

L1-2

L2-3L1-3

L1 L2

L3

Router	R2

Prefix Outgoing	Link

84.128/16 L1-2

132.43/16 L2-3

84.128.33/24 L2-3

132.43.44/24 L2

Router	R3

Prefix Outgoing	Link

132.43.44/24 L2-3

132.43/16 L3

83.128/16 L1-3

111.32.45/24 L2-3

Below	we	will	present	several	examples	of	IP	datagrams	arriving	at	a	particular	router.		We	will	give	you	the	router	and	IP	
datagram	header	upon	entry	at	the	router.		You	are	to	describe	the	path	it	will	take,	and	the	contents	of	the	datagram	
“exit”	header	on	the	last	link	it	travels	in	this	diagram.		In	case	a	router	drops	the	datagram,	that	would	be	the	contents	of	
the	datagram	just	before	it	got	dropped.		For	example,	if	router	R1	receives	a	UDP	datagram	for	destination	111.32.45.68,	
R1	turns	the	type	into	UNREACHABLE	and	sets	the	TTL	to	100	(because	there	is	no	entry	for	the	destination	address	in	the	
routing	table)	and	forwards	the	datagram	to	R3	over	link	L1-3		(because	the	destination	address	is	now	132.43.22.33).		
Finally,	R3	forwards	the	datagram	to	link	L3:

Router R1 Source Destination TTL TYPE
Entry: 132.43.22.33 111.32.45.68 10 UDP
Path: è . è è.

Exit: 1 - .

Router R1 Source Destination TTL TYPE
Entry: 132.43.44.33 84.128.33.100 4 UDP
Path:

Exit:

Router R3 Source Destination TTL TYPE
Entry: 84.128.22.3 132.43.44.2 1 TCP
Path:

Exit:

Router R2 Source Destination TTL TYPE
Entry: 142.23.33.19 132.43.44.2 5 TCP
Path:

Exit:

Router R1 Source Destination TTL TYPE
Entry: 142.23.33.19 132.43.44.2 5 UDP
Path:

Exit:

9

[5	pts]

[5	pts]

[5	pts]

[5	pts]

NETID:________

84 X

[20pts]		5.	Network	Routing

Depicted	is	a	tiny	part	of	the	Internet	with	three	routers	R1,	R2,	and	R3,	and	six	bi-directional	links,	L1,	L2,	L3,	L1-2,	L2-3,
L1-3.		Also	shown	are	the	routing	tables	of	each	of	the	three	routers.		Each	row	shows	an	IP	address	prefix	and	the	
corresponding	outgoing	link.		Recall	that	/16	stands	for	a	netmask 255.255.0.0	(i.e.,	the	only	the	first	16	bits	are	
significant),	and	/24	stands	for	a	netmask 255.255.255.0.		Also	recall	that	each	IP	datagram	(aka	packet)	has	a	source	
address,	a	destination	address,	and	a	TTL	(Time-To-Live,	usually	used	as	a	maximum	hop	count).		For	simplicity,	assume	
there	are	four	types	of	IP	datagram:		TCP,	UDP,	TIME_EXCEEDED,	and	UNREACHABLE.	

When	a	datagram	arrives	at	a	router,	the	router	first	checks	if	the	destination	address	matches	an	entry	in	the	
routing	table.		If	so	and	the	TTL	>	0,	then	the	router	decrements	the	TTL	and	forwards	the	datagram	to	the	outgoing	link	
in	the	entry.		If	not,	there	are	two	cases.		If	the	datagram	type	is	not	UDP	or	TCP,	then	the	router	simply	drops	the	
datagram.		Otherwise	the	router	swaps	the	source	and	destination	address	in	the	datagram	and	sets	the	TTL	to	100.		It	
sets	the	type	to	UNREACHABLE	if	there	was	no	match	in	the	routing	table,	or	to	TIME_EXCEEDED	otherwise.		It	then	
treats	the	datagram	as	if	it	had	just	arrived.

8

Router	R1

Prefix Outgoing	Link

132.43/16 L1-3

84.128/16 L1

84.128.33/24 L1-2

R1 R2

R3

L1-2

L2-3L1-3

L1 L2

L3

84.128/16 132.43.44/24

Router	R2

Prefix Outgoing	Link

84.128/16 L1-2

132.43/16 L2-3

84.128.33/24 L2-3

132.43.44/24 L2

Router	R3

Prefix Outgoing	Link

132.43.44/24 L2-3

132.43/16 L3

84.128/16 L1-3

111.32.45/24 L2-3
132.43/16

Below	we	will	present	several	examples	of	IP	datagrams	arriving	at	a	particular	router.		We	will	give	you	the	router	and	IP	
datagram	header	upon	entry	at	the	router.		You	are	to	describe	the	path	it	will	take,	and	the	contents	of	the	datagram	
“exit”	header	on	the	last	link	it	travels	in	this	diagram.		In	case	a	router	drops	the	datagram,	that	would	be	the	contents	of	
the	datagram	just	before	it	got	dropped.		For	example,	if	router	R1	receives	a	UDP	datagram	for	destination	111.32.45.68,	
R1	turns	the	type	into	UNREACHABLE	and	sets	the	TTL	to	100	(because	there	is	no	entry	for	the	destination	address	in	the	
routing	table)	and	forwards	the	datagram	to	R3	over	link	L1-3		(because	the	destination	address	is	now	132.43.22.33).		
Finally,	R3	forwards	the	datagram	to	link	L3:

Router R1 Source Destination TTL TYPE
Entry: 132.43.22.33 111.32.45.68 10 UDP
Path: è . è è.

Exit: 1 - .

Router R1 Source Destination TTL TYPE
Entry: 132.43.44.33 84.128.33.100 4 UDP
Path: R1	è L1-2	è R2è L2-3	è R3èL1-3	è R1è L1-2	è R2	è L2		

There was	a	typo	in	the	original	exam	and	the	R3	routing	table	had	an	entry	for	83.128/16	instead	of	
84.128/16.		In	that	case,	the	route	is:	R1	è L1-2	è R2è L2-3	è R3èL2-3è R2	è L2	

Exit: 84.128.33.100 132.43.44.33 99 TIME_EXCEEDED

ALT.	Exit 84.128.33.100 132.43.44.33 98 UNREACHABLE

Router R3 Source Destination TTL TYPE
Entry: 84.128.22.3 132.43.44.2 1 TCP
Path: R3	è L2-3	è R2è L1-2	è R1èL1

Exit: 132.43.44.2 84.128.22.3 98 TIME_EXCEEDED

Router R2 Source Destination TTL TYPE
Entry: 142.23.33.19 132.43.44.2 5 TCP
Path: R2	è L2

Exit: 142.23.33.19 132.43.44.2 4 TCP

Router R1 Source Destination TTL TYPE
Entry: 142.23.33.19 132.43.44.2 5 UDP
Path: R1	è L1-3	è R3è L2-3	è R2èL2

Exit: 142.23.33.19 132.43.44.2 2 UDP

9

[5	pts]

[5	pts]

[5	pts]

[5	pts]

NETID:________

4

[20pts]		2.	Alternating	Bit	Protocol
This	question	is	to	test	your	understanding	of	retransmission	protocols	such	as	TCP.		Suppose	there	are	two	computers,	
X	and	Y,	connected	by	a	single	physical	network	link.		Packets	can	flow	in	both	directions.	Packets	can	get	lost,	but	they	
can’t	get	re-ordered	 or	damaged.		While	unreliable,	if	one	computer	keeps	retransmitting	the	same	packet	(with	the	
same	contents),	eventually	at	least	one	copy	will	arrive	at	the	other	computer.		The	minimum	latency	on	the	link	(the	
time	between	sending	a	packet	and	receiving	it)	is	1	millisecond	and	the	maximum	packet	size	is	101	bytes.		The	
bandwidth	is	unlimited.		Note	that	because	of	the	set-up,	packets	do	not	need	addresses:	 a	packet	sent	on	one	end	of	
the	link	is	automatically	destined	for	the	other.		The	length	of	a	packet	p is	given	by	function	length(p).

Pat	designs	an	“alternating	bit	protocol"	for	reliable	communication	from	X	to	Y:		X	and	Y	both	maintain	a	sequence	
number	that	counts	the	number	of	packets	sent	and	received,	respectively.		A	packet	has	two	fields:	a	1	byte	header	
and	a	payload	of	at	most	100	bytes.		Having	only	limited	size,	the	header	cannot	store	the	entire	sequence	number.		In	
this	case,	the	1-byte	header	stores	the	sequence	number	mod	2,	that	is,	the	header	only	contains	the	least	significant	
bit	of	the	sequence	 number.		Packets	from	X	to	Y	are	data	packets,	and	packets	from	Y	to	X	are	acknowledgment	
packets.

The	send	function	on	X	is	as	below: The	corresponding	receive	function	on	Y	is:
var recv_seq initially 0;

fun reliable_receive():
# Keep	receiving	packets	until	a	packet
# arrives	with	the	expected	sequence	 number
for ever:

# Wait	for	data	packet	and	prepare	ACK
var data = link.receive(∞)
var ack = new Packet()
ack.seq = data.seq
ack.payload = None

# If	the	data	packet	has	the	right	sequence
# number,	increment recv_seq,
# send	the	ack,	and	return	the	payload
if data.seq == recv_seq mod 2:
recv_seq += 1
link.send(ack)
return data.payload

# send	acknowledgment	in	any	case
link.send(ack)

var send_seq initially 0;

fun reliable_send(payload):
if length(payload) > MTU − 1:

return ERROR(“payload	too	large”)

# Keep	trying	until	an	acknowledgment	is	received
for ever:

# Send	a	data	packet
var data = new Packet()
data.seq = send_seq mod 2
data.payload = payload
link.send(data)

# Wait	for	an	ack packet	with	the	same	sequence
# number,	timing	out	after	5	seconds.		If	successful
# increment	send_seq and	return	SUCCESS.
var ack = link.receive(5)
if ack != TIMEOUT:
if ack.seq == send_seq mod 2:
send_seq += 1
return SUCCESS

Basically,	the	sender	sends	even	packets	(0,	2,	4,	…)	with	a	header	containing	0	and	odd	packets	(1,	3,	5,	…)	with	a	
header	containing	1.		For	each	packet,	the	sender	keeps	sending	the	same	packet	until	it	gets	an	acknowledgment	with	
the	same	 bit	in	the	header.		The	receiver	acknowledges	all	packets	it	receives.		It	delivers	the	first	packet	with	a	0	
header,	then	the	first	packet	with	a	1	header,	and	then	it	goes	back	to	0	and	so	on,	alternating	between	0	and	1.

Answer	the	following	questions:

a) [3]	True	or	False:	It	is	an	invariant	that	((send_seq ==	 recv_seq)	or	(send_seq +	1	==	 recv_seq)).	

a) [2]	What	layer	protocol	is	this:		Data	Link,	Network,	Transport,	or	Application?

d) [3]	True	or	False:	if	packets	could	be	re-ordered	on	the	link,	the	protocol	still	works.

d) [3]	True	or	False:		if	the	protocol	used	all	8	bits	in	the	header	and	used	an	8-bit	
sequence	number	(0	…	255)	instead	of	a	1-bit	sequence	number	(i.e.,	replacing	mod 2
with	mod 256),	the	protocol	would	work	even	if	packets	could	get	arbitrarily	re-
ordered?

• If	the	probabilities	of	packet	loss	on	the	links	that	connect	a	source	and	destination	are	
independent	of	one	another,	then	it	is	not	strictly	necessary	to	implement	per-link	
reliability:	end-to-end	retransmission	is	sufficient	to	provide	reliability.		For	some	
applications	an	end-to-end	acknowledgment	is	even	necessary,	for	example	in	the	case	of	
reliable	file	transfer	between	hosts	that	may	crash.

• Implementing	reliability	on	intermediate	links	is	useless	and	one	should	never	do	it.

• Implementing	reliability	on	intermediate	links	induces	overhead	(for	example,	buffering	for	
retransmission	or	computing	checksums)	even	for	end-hosts	that	don’t	need	it.

g)			[3]	Which	of	the	following	statements	are	consistent	with	the	end-to-end	design	principle?		Check	either	True	or	
False	(no	points	if	you	check	both):

True False

5

f) [3]	Suppose	the	protocol	used	an	8-bit	sequence	number	and	windows	of	at	most	10	
packets	so	that	up	to	10	packets	could	be	sent	before	an	acknowledgment	was	
required,	what	would	the	maximum	payload	transmission	rate	be	(in	bytes/sec)?		
(Recall	that	the	bandwidth	is	unlimited,	but	the	end-to-end	latency	is	not.)

Briefly	explain	(or	provide	the	work	for)	your	answer:

c) [3]	What	is	the	maximum	payload	transmission	rate	in	bytes	/	second	from	the	sender’s	
perspective?		(Think	about	the	best	case	in	which	no	packets	get	lost.)

Briefly	explain	(or	provide	the	work	for)	your	answer:

NETID:________

4

[20pts]		2.	Alternating	Bit	Protocol
This	question	is	to	test	your	understanding	of	retransmission	protocols	such	as	TCP.		Suppose	there	are	two	computers,	
X	and	Y,	connected	by	a	single	physical	network	link.		Packets	can	flow	in	both	directions.	Packets	can	get	lost,	but	they	
can’t	get	re-ordered	 or	damaged.		While	unreliable,	if	one	computer	keeps	retransmitting	the	same	packet	(with	the	
same	contents),	eventually	at	least	one	copy	will	arrive	at	the	other	computer.		The	minimum	latency	on	the	link	(the	
time	between	sending	a	packet	and	receiving	it)	is	1	millisecond	and	the	maximum	packet	size	is	101	bytes.		The	
bandwidth	is	unlimited.		Note	that	because	of	the	set-up,	packets	do	not	need	addresses:	 a	packet	sent	on	one	end	of	
the	link	is	automatically	destined	for	the	other.		The	length	of	a	packet	p is	given	by	function	length(p).

Pat	designs	an	“alternating	bit	protocol"	for	reliable	communication	from	X	to	Y:		X	and	Y	both	maintain	a	sequence	
number	that	counts	the	number	of	packets	sent	and	received,	respectively.		A	packet	has	two	fields:	a	1	byte	header	
and	a	payload	of	at	most	100	bytes.		Having	only	limited	size,	the	header	cannot	store	the	entire	sequence	number.		In	
this	case,	the	1-byte	header	stores	the	sequence	number	mod	2,	that	is,	the	header	only	contains	the	least	significant	
bit	of	the	sequence	 number.		Packets	from	X	to	Y	are	data	packets,	and	packets	from	Y	to	X	are	acknowledgment	
packets.

The	send	function	on	X	is	as	below: The	corresponding	receive	function	on	Y	is:
var recv_seq initially 0;

fun reliable_receive():
# Keep	receiving	packets	until	a	packet
# arrives	with	the	expected	sequence	 number
for ever:

# Wait	for	data	packet	and	prepare	ACK
var data = link.receive(∞)
var ack = new Packet()
ack.seq = data.seq
ack.payload = None

# If	the	data	packet	has	the	right	sequence
# number,	increment recv_seq,
# send	the	ack,	and	return	the	payload
if data.seq == recv_seq mod 2:
recv_seq += 1
link.send(ack)
return data.payload

# send	acknowledgment	in	any	case
link.send(ack)

var send_seq initially 0;

fun reliable_send(payload):
if length(payload) > MTU − 1:

return ERROR(“payload	too	large”)

# Keep	trying	until	an	acknowledgment	is	received
for ever:

# Send	a	data	packet
var data = new Packet()
data.seq = send_seq mod 2
data.payload = payload
link.send(data)

# Wait	for	an	ack packet	with	the	same	sequence
# number,	timing	out	after	5	seconds.		If	successful
# increment	send_seq and	return	SUCCESS.
var ack = link.receive(5)
if ack != TIMEOUT:
if ack.seq == send_seq mod 2:
send_seq += 1
return SUCCESS

Basically,	the	sender	sends	even	packets	(0,	2,	4,	…)	with	a	header	containing	0	and	odd	packets	(1,	3,	5,	…)	with	a	
header	containing	1.		For	each	packet,	the	sender	keeps	sending	the	same	packet	until	it	gets	an	acknowledgment	with	
the	same	 bit	in	the	header.		The	receiver	acknowledges	all	packets	it	receives.		It	delivers	the	first	packet	with	a	0	
header,	then	the	first	packet	with	a	1	header,	and	then	it	goes	back	to	0	and	so	on,	alternating	between	0	and	1.

Answer	the	following	questions:

a) [3]	True	or	False:	It	is	an	invariant	that	((send_seq ==	 recv_seq)	or	(send_seq +	1	==	 recv_seq)).	

a) [2]	What	layer	protocol	is	this:		Data	Link,	Network,	Transport,	or	Application?

True

Transport

d) [3]	True	or	False:	if	packets	could	be	re-ordered	on	the	link,	the	protocol	still	works.

d) [3]	True	or	False:		if	the	protocol	used	all	8	bits	in	the	header	and	used	an	8-bit	
sequence	number	(0	…	255)	instead	of	a	1-bit	sequence	number	(i.e.,	replacing	mod 2
with	mod 256),	the	protocol	would	work	even	if	packets	could	get	arbitrarily	re-
ordered?

False

False

500,000

• If	the	probabilities	of	packet	loss	on	the	links	that	connect	a	source	and	destination	are	
independent	of	one	another,	then	it	is	not	strictly	necessary	to	implement	per-link	
reliability:	end-to-end	retransmission	is	sufficient	to	provide	reliability.		For	some	
applications	an	end-to-end	acknowledgment	is	even	necessary,	for	example	in	the	case	of	
reliable	file	transfer	between	hosts	that	may	crash.

• Implementing	reliability	on	intermediate	links	is	useless	and	one	should	never	do	it.

• Implementing	reliability	on	intermediate	links	induces	overhead	(for	example,	buffering	for	
retransmission	or	computing	checksums)	even	for	end-hosts	that	don’t	need	it.

g)			[3]	Which	of	the	following	statements	are	consistent	with	the	end-to-end	design	principle?		Check	either	True	or	
False	(no	points	if	you	check	both):

✓

✓

True False

✓

100	/	(2	x	.001)	

5

f) [3]	Suppose	the	protocol	used	an	8-bit	sequence	number	and	windows	of	at	most	10	
packets	so	that	up	to	10	packets	could	be	sent	before	an	acknowledgment	was	
required,	what	would	the	maximum	payload	transmission	rate	be	(in	bytes/sec)?		
(Recall	that	the	bandwidth	is	unlimited,	but	the	end-to-end	latency	is	not.)

Briefly	explain	(or	provide	the	work	for)	your	answer:

c) [3]	What	is	the	maximum	payload	transmission	rate	in	bytes	/	second	from	the	sender’s	
perspective?		(Think	about	the	best	case	in	which	no	packets	get	lost.)

Briefly	explain	(or	provide	the	work	for)	your	answer:

50,000

10	x	100	/	(2	x	.001)	

NETID:________

