
[15pts]		6.	Variations	on	Dining	Philosophers

Recall	the	five	Dining	Philosophers	(and	five	chopsticks)	sitting	around	a	circular	table:		if	they	all	pick	up	their	right	
chopstick	before	their	left,	they	can	end	up	in	a	deadlocked	situation.

a) [4]	In	the	box	to	the	right,	draw	a	Resource	Allocation	
Graph	showing	the	Philosophers	and	chopsticks	and	a	
deadlocked	situation.

b) [3]	Assume	L	philosophers	are	left-handed	and	pick	up	their	
left	chopstick	first,	while	the	remaining	R	philosophers	are	
right-handed	and	pick	up	their	right	chopstick	first.		Fill	out	
the	following	table,	indicating	yes,	no,	or	depends (describe	
scenario	briefly	in	the	last	case).

L R Deadlock	Possible?

5 0

4 1

3 2

c)	[3]	The	five	philosophers	instead	decide	to	place	N	chopsticks	in	a	heap	in	the	middle	of	the	table.		Philosophers	can	
now	pick	up	one	chopstick	at	a	time,	but	still	need	two	to	eat.		Say	if	deadlock	is	possible	(YES,	NO,	DEPENDS)	in	each	of	
the	following	cases:

N Deadlock	Possible?

<5

5

>5

d)	[5]	In	a	recent	NASA	discovery,	planet	Mars	has	three-handed	philosophers.		Consider	a	table	with	five	three-handed	
philosophers	and	a	pile	of	N	chopsticks	in	the	middle	of	the	table.		Each	philosopher	needs	3	chopsticks	to	eat.		What	is	
the	smallest	N	such	that	deadlock	is	impossible?

10

[15pts]		6.	Variations	on	Dining	Philosophers

Recall	the	five	Dining	Philosophers	(and	five	chopsticks)	sitting	around	a	circular	table:		if	they	all	pick	up	their	right	
chopstick	before	their	left,	they	can	end	up	in	a	deadlocked	situation.

a) [4]	In	the	box	to	the	right,	draw	a	Resource	Allocation	
Graph	showing	the	Philosophers	and	chopsticks	and	a	
deadlocked	situation.

b) [3]	Assume	L	philosophers	are	left-handed	and	pick	up	their	
left	chopstick	first,	while	the	remaining	R	philosophers	are	
right-handed	and	pick	up	their	right	chopstick	first.		Fill	out	
the	following	table,	indicating	yes,	no,	or	depends (describe	
scenario	briefly	in	the	last	case).

L R Deadlock	Possible?

5 0 YES	(each philosopher	picks	up	
left	chopstick	first)

4 1 NO	(symmetry	broken)

3 2 NO	(ditto)

c)	[3]	The	five	philosophers	instead	decide	to	place	N	chopsticks	in	a	heap	in	the	middle	of	the	table.		Philosophers	can	
now	pick	up	one	chopstick	at	a	time,	but	still	need	two	to	eat.		Say	if	deadlock	is	possible	(YES,	NO,	DEPENDS)	in	each	of	
the	following	cases:

N Deadlock	Possible?

<5 YES	(each	philosopher	picks	up	0	or	1	chopstick	until	nothing	is	left)
5 YES	(each	philosopher	picks	up	1	chopstick	until	nothing	is	left)
>5 NO	(always	at	least	one	philosopher	who	can	eat)

d)	[5]	In	a	recent	NASA	discovery,	planet	Mars	has	three-handed	philosophers.		Consider	a	table	with	five	three-handed	
philosophers	and	a	pile	of	N	chopsticks	in	the	middle	of	the	table.		Each	philosopher	needs	3	chopsticks	to	eat.		What	is	
the	smallest	N	such	that	deadlock	is	impossible?

10

11

3

42

1 5

A B

E

D

C

With	10	chopsticks,	each	philosopher	
could	pick	up	two	chopsticks	and	end	
up	deadlocked.		With	11,	there	is	
always	at	least	one	philosopher	who	
can	eat.

[10pts]		6.	A	New	Job	at	Knab Bank

You	have	just	started	working	for	the	Knab Bank	to	maintain	their	core	code.		A	now	retired	programmer	has	written	
some	highly	concurrent	code	that	allows	many	operations	on	bank	accounts	to	go	on	concurrently.		The	programmer	took	
great	care	to	make	sure	that	it	would	never	be	possible	to	``see	inconsistent	state’’,	for	example,	halfway	through	a	
transfer	from	one	account	to	another	when	money	has	been	withdrawn	from	the	one	account	but	not	yet	deposited	into	
the	other.		All	that	seems	to	work	great.		Unfortunately,	some	operations	like	deposit	and	transfer	sometimes	seem	to	
hang	for	ever.		Your	job	is	to	find	the	bug	and	fix	it.		Below	is	an	excerpt	of	the	code:

class Account: # account	object
def __init__(self):

self.lock = Lock() # lock	on	the	account
self.balance = 0 # amount	of	money	in	the	account

class Bank:
def __init__(self): # initialize	instance	variables

self.lock = Lock() # lock	on	the	list	of	accounts
self.accounts = [] # append-only	list	of	accounts

def newAccount(self): # create	an	account	and	return	new	account	number
with self.lock:

acct_number = len(self.accounts)
self.accounts.append(Account())
return acct_number

def deposit(self, acct_number, amount): # add	money	to	account
acct = self.accounts[acct_number]
with acct.lock:

acct.balance += amount

# transfer	money	from	one	account	to	another.		Return	whether	successful	or	not
def transfer(self, acct_number_from, acct_number_to, amount):

acct_from = self.accounts[acct_number_from]
acct_to = self.accounts[acct_number_to]
with acct_from.lock:

with acct_to.lock:
if acct_from.balance < amount: # insufficient	funds

sufficient_balance = False
else: # update	both	accounts

sufficient_balance = True
acct_from.balance -= amount
acct_to.balance += amount

return sufficient_balance # return	success	status

10

Briefly	describe	the	bug(s)	and	how	to	fix	it	(them)	in	the	box	below.		Use	plain	English,	not	code.

[10pts]		6.	A	New	Job	at	Knab Bank

You	have	just	started	working	for	the	Knab Bank	to	maintain	their	core	code.		A	now	retired	programmer	has	written	
some	highly	concurrent	code	that	allows	many	operations	on	bank	accounts	to	go	on	concurrently.		The	programmer	took	
great	care	to	make	sure	that	it	would	never	be	possible	to	``see	inconsistent	state’’,	for	example,	halfway	through	a	
transfer	from	one	account	to	another	when	money	has	been	withdrawn	from	the	one	account	but	not	yet	deposited	into	
the	other.		All	that	seems	to	work	great.		Unfortunately,	some	operations	like	deposit	and	transfer	sometimes	seem	to	
hang	for	ever.		Your	job	is	to	find	the	bug	and	fix	it.		Below	is	an	excerpt	of	the	code:

class Account: # account	object
def __init__(self):

self.lock = Lock() # lock	on	the	account
self.balance = 0 # amount	of	money	in	the	account

class Bank:
def __init__(self): # initialize	instance	variables

self.lock = Lock() # lock	on	the	list	of	accounts
self.accounts = [] # append-only	list	of	accounts

def newAccount(self): # create	an	account	and	return	new	account	number
with self.lock:

acct_number = len(self.accounts)
self.accounts.append(Account())
return acct_number

def deposit(self, acct_number, amount): # add	money	to	account
acct = self.accounts[acct_number]
with acct.lock:

acct.balance += amount

# transfer	money	from	one	account	to	another.		Return	whether	successful	or	not
def transfer(self, acct_number_from, acct_number_to, amount):

acct_from = self.accounts[acct_number_from]
acct_to = self.accounts[acct_number_to]
with acct_from.lock:

with acct_to.lock:
if acct_from.balance < amount: # insufficient	funds

sufficient_balance = False
else: # update	both	accounts

sufficient_balance = True
acct_from.balance -= amount
acct_to.balance += amount

return sufficient_balance # return	success	status

10

Briefly	describe	the	bug(s)	and	how	to	fix	it	(them)	in	the	box	below.		Use	plain	English,	not	code.

The	two	locks	in	the	transfer()	operation	should	be	
acquired	in,	say,	order	of	account	number,	or	
deadlock	occurs	when	cycles	of	waiting	for	locks	
form.

