
Problem Solving 
Session

Semaphores

Prepared by Dhruv Singhal



Recap: Semaphore
Semaphore is a data structure that encapsulates an integer.

It has two operations P and V.

P decrements the integer and V increments it.

From the user's perspective, the integer is never allowed to become negative.

Attempting to decrement below 0 will block the running thread until another 
thread increments the count.



The Senate Bus Problem
Riders come to a bus stop and wait for a bus.

When the bus arrives, all the waiting riders invoke boardBus, but anyone who 
arrives while the bus is boarding has to wait for the next bus.

The capacity of the bus is 50 people; if there are more than 50 people waiting, 
some will have to wait for the next bus.

When all the waiting riders have boarded, the bus can invoke depart.

If the bus arrives when there are no riders, it should depart immediately.

Write synchronization code that enforces all of these constraints.



Solution 1
#-- Initialization -------------------

riders = 0

mutex = Semaphore(1)

multiplex = Semaphore(50)

bus = Semaphore(0)

allAboard = Semaphore(0)

#-- Bus ------------------------------

mutex.P()

if riders > 0:

bus.V()

allAboard.P()

mutex.V()

depart()

#-- Riders ---------------------------

multiplex.P()

mutex.P()

riders += 1

mutex.V()

bus.P()

multiplex.V()

boardBus()

riders -= 1

if riders == 0:

allAboard.V()

else:

bus.V()



Solution 2
#-- Initialization -------------------

waiting = 0

mutex = new Semaphore(1)

bus = new Semaphore(0)

boarded = new Semaphore(0)

#-- Riders ---------------------------

mutex.P()

waiting += 1

mutex.V()

bus.P()

board()

boarded.V()

#-- Bus ------------------------------

mutex.P()

n = min(waiting, 50)

for i in range(n):

bus.V()

boarded.P()

waiting = max(waiting-50, 0)

mutex.V()

depart()


