Feedback to HW9

Aurora

December 7, 2016

In this solution, denote Int1 with i_{1} and Int2 with i_{2}.

1 Semaphore

1.1 How many threads will exit from wait (c)
$i_{1} \bmod 4+4$

1.2 Most blocks accessed

$i_{1} \bmod 4+3$

1.3 Filling the blanks in 2nd version

In init: $c . h=$ Semaphore(0)
In wait: $\mathrm{V}(c . h)$
In signal: $\mathrm{P}(c . h)$
In broadcast: $\mathrm{P}(c . h)$

2 Stable Network

2.1 Stable solution?

Yes, A: ABE, B: BE, C: CDE, D: DE

2.2 Stable solution 2?

No. Consider the following case:
A: AE

B: BAE (AE is found to be valid)
D: DE
C: CDE
$\mathrm{A}: \mathrm{ADE}$ (DE is found to be valid and ADE is preferred to AE)
$\mathrm{B}: \mathrm{BE}$ (AE is found to be invalid)
$\mathrm{C}: \mathrm{CBE}$ (BE is found to be valid and CBE is preferred to CDE)
D: DCBE (CBE is found to be valid and DCBE is preferred to DE)
A : AE (DE is found to be invalid)
... (infinitely loop)
Any initialization is acceptable. All will fall into this loop.

2.3 Temporary forwarding loop

$i_{1}=0$: A and D will see temporary forwarding loop.
$i_{1}=1$: A and D will see temporary forwarding loop. or $\mathrm{A}, \mathrm{B}, \mathrm{D}$
$i_{1} \geq 2: \mathrm{A}, \mathrm{B}, \mathrm{D}$

3 New Product

Students are supposed to answer this question with one of following assumptions:

- Each block has only one bit i.e. all bits in a block flip at the same time

In this case each block only has two states: correct or failed.
The answer for this case is: Q3.1: 1, Q3.2: 1.
Analysis graph are shown in appendix.

- Each block has a lot of bits, and each of them can be flipped independently

- 1 block fails: can be detected and (located + recovered);
- 2 blocks fail:
* in same line or same row: can be detected and (located + recovered);
* in different lines and different rows: can be detected, perhaps can be located and recovered by trail and error;
- 3 blocks fail: (If students are not considering case as detectable, i.e. giving answer 2, I think is also reasonable.)
* all in same line or same row: can be detected and located;
* a and b in same line, b and c in the same row: can be detected, perhaps can be located and recovered by trail and error;
* a and b in the same line/row, c in another line/row and in the third row/line: can be detected (there is error), the number cannot be determined(there may be 3 to 6 failure), cannot be located, cannot be recovered;
* all three are in diff lines and rows: can be detected (there is error), the number cannot be determined(there may be 3 to 9 failure), cannot be located, cannot be recovered;
- more than 4 blocks fail: can be detected (the exact number may not be detected), cannot be recovered.

4 Appendix

Case analysis: 1 bit per block

WLOG, assume the original state to be like this:

0	0	0	$\sqrt{ }$
0	0	0	$\sqrt{ }$
0	0	0	$\sqrt{ }$
$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	

- One block failure

$\mathbf{1}$	0	0	\times
0	0	0	$\sqrt{ }$
0	0	0	$\sqrt{ }$
\times	$\sqrt{ }$	$\sqrt{ }$	

Table 1: 1 failure - detectable and recoverable

- Two block failure

		1	0	\checkmark	0	0	0	$\sqrt{ }$	0	0	0	\checkmark	$\sqrt{ }$
		0	0	$\sqrt{ }$	1	1	0	$\sqrt{ }$	0	0	0	\checkmark	$\sqrt{ }$
		0	0	$\sqrt{ }$	0	0	0	$\sqrt{ }$	1	1	0	\checkmark	,
			$\sqrt{ }$			\times	$\sqrt{ }$			\times	\checkmark		

Table 2: 2 failures - indistinguishable

- Three block failures
- Four failures

You can do this for 5 or more than 5 failures.

| 1 | 0 | 0 | \times | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | \times | | |
| 0 | 0 | 0 | $\sqrt{ }$ | | |
| \times | \times | $\sqrt{ }$ | | 0 1 0
 1 \times
 1 0 0
 0 0 0 | \times |
| \times | \times | $\sqrt{ }$ | | | |

Table 3: 2 failures - indistinguishable

| $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | \times | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | $\sqrt{ }$ | |
| 0 | 0 | 0 | $\sqrt{ }$ | |
| \times | \times | \times | | 0 0 1
 1 1 0
 1 $\sqrt{ }$
 0 0 0 |
| \times | \times | \times | | |

Table 4: 3 failures - indistinguishable

| $\mathbf{1}$ | 0 | 0 | \times | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 0 | $\sqrt{ }$ | | |
| 0 | 0 | 0 | $\sqrt{ }$ | | |
| \times | $\sqrt{ }$ | $\sqrt{ }$ | | 1 0 0
 0 0 0 | $\times \sqrt{ }$ |
| 0 | 0 | 0 | $\sqrt{ }$ | | |
| \times | $\sqrt{ }$ | $\sqrt{ }$ | | | |

Table 5: 3 failures - indistinguishable from 1 failure case

$\mathbf{1}$	$\mathbf{1}$	0	$\sqrt{ }$
$\mathbf{1}$	1	0	$\sqrt{ }$
0	0	0	$\sqrt{ }$
$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	

Table 6: 4 failures - indistinguishable from original case

$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	\times
1	0	0	\times
0	0	0	$\sqrt{ }$
$\sqrt{ }$	\times	\times	

0	0	1	\times
1	0	0	\times
1	1	0	$\sqrt{ }$
$\sqrt{ }$	\times	\times	

Table 7: 4 failures - indistinguishable

			$\sqrt{ }$		1	1	V$\sqrt{ }$$\sqrt{ }$	
			$\sqrt{ }$		0	0		
			$\sqrt{ }$	0	0	0		
				$\sqrt{ }$	\times			

Table 8: 4 failures - indistinguishable from 2-failure case

