Feedback to HW9

Aurora

December 7, 2016

In this solution, denote Int1 with i_1 and Int2 with i_2 .

1 Semaphore

1.1 How many threads will exit from wait(c)

 $i_1 \mod 4+4$

1.2 Most blocks accessed

 $i_1 \mod 4+3$

1.3 Filling the blanks in 2nd version

In init: c.h = Semaphore(0)In wait: V(c.h)In signal: P(c.h)In broadcast: P(c.h)

2 Stable Network

2.1 Stable solution?

Yes, A: ABE, B: BE, C: CDE, D: DE

2.2 Stable solution 2?

No. Consider the following case:

A: AE

- B: BAE (AE is found to be valid)
- D: DE
- C: CDE
- A: ADE (DE is found to be valid and ADE is preferred to AE)
- B: BE (AE is found to be invalid)
- C: CBE (BE is found to be valid and CBE is preferred to CDE)
- D: DCBE (CBE is found to be valid and DCBE is preferred to DE)
- A: AE (DE is found to be invalid)
- ... (infinitely loop)

Any initialization is acceptable. All will fall into this loop.

2.3 Temporary forwarding loop

 $i_1 = 0$: A and D will see temporary forwarding loop. $i_1 = 1$: A and D will see temporary forwarding loop. or A, B, D $i_1 \ge 2$: A, B, D

3 New Product

Students are supposed to answer this question with one of following assumptions:

- Each block has only one bit i.e. all bits in a block flip at the same time
 - In this case each block only has two states: correct or failed.

The answer for this case is: Q3.1: 1, Q3.2: 1.

Analysis graph are shown in **appendix**.

- Each block has a lot of bits, and each of them can be flipped independently
 - -1 block fails: can be detected and (located + recovered);
 - -2 blocks fail:
 - * in same line or same row: can be detected and (located + recovered);
 - $\ast\,$ in different lines and different rows: can be detected, perhaps can be located and recovered by trail and error;
 - 3 blocks fail: (If students are not considering case as detectable, i.e. giving answer 2, I think is also reasonable.)
 - * all in same line or same row: can be detected and located;
 - * a and b in same line, b and c in the same row: can be detected, perhaps can be located and recovered by trail and error;
 - * a and b in the same line/row, c in another line/row and in the third row/line: can be detected (there is error), the number cannot be determined(there may be 3 to 6 failure), cannot be located, cannot be recovered;
 - * all three are in diff lines and rows: can be detected (there is error), the number cannot be determined(there may be 3 to 9 failure), cannot be located, cannot be recovered;
 - more than 4 blocks fail: can be detected (the exact number may not be detected), cannot be recovered.

4 Appendix

Case analysis: 1 bit per block

WLOG, assume the original state to be like this:

0	0	0	
0	0	0	
0	0	0	
\checkmark		\checkmark	

• One block failure

1	0	0	×
0	0	0	
0	0	0	\checkmark
\times			

Table 1: 1 failure - detectable and recoverable

• Two block failure

1	1	0		0	0	0		0	0	0	
0	0	0		1	1	0		0	0	0	
0	0	0	\checkmark	0	0	0	\checkmark	1	1	0	
×	×			×	×			×	×		

Table 2: 2 failures - indistinguishable

- Three block failures
- Four failures

You can do this for 5 or more than 5 failures.

1	0	0	×	0	1	0	×
0	1	0	×	1	0	0	×
0	0	0	\checkmark	0	0	0	
×	\times			×	×		

Table 3: 2 failures - indistinguishable

1	1	1	\times	0	0	1	×
0	0	0		1	1	0	
0	0	0		0	0	0	
×	\times	×		×	×	\times	

Table 4: 3 failures - indistinguishable

1	0	0	×	1	0	0	×
1	1	0		0	0	0	
0	0	0		0	0	0	
×		\checkmark		×		\checkmark	

Table 5: 3 failures - indistinguishable from 1 failure case

1	1	0	
1	1	0	
0	0	0	
\checkmark	\checkmark	\checkmark	

Table 6: 4 failures - indistinguishable from original case

1	1	1	×	0	0	1	×
1	0	0	\times	1	0	0	×
0	0	0	\checkmark	1	1	0	\checkmark
\checkmark	Х	\times		\checkmark	\times	\times	

Table 7: 4 failures - indistinguishable

1	1	0	 0	1	1	
1	0	1	 0	0	0	
0	0	0	 0	0	0	
\checkmark	\times	×	\checkmark	\times	×	

Table 8: 4 failures - indistinguishable from 2-failure case