1. Hardware Upgrade

1.1: 2 points

1 point for a correct answer.
1 point for adequate work - using the access time weighted by hit rate probabilities formula.
Average memory access time $=$

$$
\begin{gathered}
T_{\text {TLB }}+\left(1-P_{\text {TLBMiss }}\right) *\left[T_{\text {Cache }}+P_{\text {CacheMiss }} * T_{D R A M}\right]+ \\
P_{\text {TLBMiss }} *\left[2 T_{\text {DRAM }}+\left(1-P_{\text {Fault }}\right) *\left[T_{\text {Cache }}+P_{\text {CacheMiss }} * T_{D R A M}\right]+P_{\text {Fault }} * T_{H D D}\right]
\end{gathered}
$$

Let $\operatorname{Int} 1=6, \operatorname{Int} 2=3$. Then,

$$
\begin{gathered}
T_{\text {avg }}=1+(1-.01) *[1+.01 * 160]+.01 *\left[2 * 160+(1-.00002) *[1+.01 * 160]+.00002 * 13 * 10^{6}\right] \\
T_{\text {avg }}=9.4 n s
\end{gathered}
$$

1.2: 2 points

1 point for choosing A, B, and C (all three must be chosen). No points awarded in this section if this answer is wrong.
1 point for the correct memory access time calculation.
Average memory access time $=$

$$
\begin{gathered}
T_{\text {TLB }}+\left(1-P_{\text {TLBMiss }}\right) *\left[T_{\text {Cache }}+P_{\text {CacheMiss }} * T_{\text {DRAM }}\right]+ \\
P_{\text {TLBMiss }} *\left[2 T_{\text {DRAM }}+\left(1-P_{\text {Fault }} *\left[T_{\text {Cache }}+P_{\text {CacheMiss }} * T_{\text {DRAM }}\right]+P_{\text {Fault }} *\left[T_{S S D}+P_{\text {SSDMiss }} * T_{H D D}\right]\right]\right.
\end{gathered}
$$

Let Int1 $=6$, Int $2=3$. Then,

$$
\begin{gathered}
T_{\text {avg }}=1+(1-.01) *[1+.01 * 160]+.01 *\left[2 * 160+(1-.00001) *[1+.01 * 160]+.00001 *\left[16 * 1000+.1 * 7 * 10^{6}\right]\right] \\
T_{\text {avg }}=6.87 \mathrm{~ns}
\end{gathered}
$$

2. Raid by RAID

2.1: 1 point

1 point for a correct answer.
4000 tracks * 6000 sectors * 512 bytes * 5 disks ≈ 572.2 GiB

2.2: 2 points

1 point for accessing disks $0,2,3,4$, and 5 .
1 point for reconstructing disk 1 by XORing bits from the other disks.

2.3: 2 points

1 point for a correct answer.
Writing to block 0 access Disk 0 and Disk 5 (for parity). So, we must eliminate any writes to blocks that access these disks.

0: Obviously writes to Disk 0.
4: Parity writes to Disk 5.
8: Ok.
21: Ok.
24: Writes to Disk 5.
26: Parity writes to Disk 0.
30: Writes to Disk 0.
38: Ok.
32: Parity writes to Disk 5.
Valid blocks: 8, 21, 38.

3. Elevator

Let $\operatorname{Int} 1=6, \operatorname{Int} 2=3$.
Request order: $5,23,9,14,2,20,4,10,12,16,30$
Initial floor: 11

3.1: 2 points

2 points for a correct answer.
To calculate, sum the pairwise differences between floors.

$$
\begin{aligned}
& |11-5|+|5-23|+|23-9|+|9-14|+|14-2|+|2-20|+|20-4|+|4-10| \\
& +|10-12|+|12-16|+|16-30| \\
& =115 \text { floors }
\end{aligned}
$$

3.2: 2 points

2 points for a correct answer.
The next floor is the closest floor (for ties, earliest and closest floor).

$$
\begin{aligned}
& |11-10|+|10-9|+|9-12|+|12-14|+|14-16|+|16-20|+|20-23|+\mid \\
& 23-30|+|30-5|+|5-4|+|4-2| \\
& =51 \text { floors }
\end{aligned}
$$

3.3: 2 points

2 points for a correct answer (We accepted LOOK or C-LOOK for this).
C-LOOK: The next floor is the closest increasing floor (restarts at lowest floor when it reaches the end).

```
| 11-12|+ | 12-14 | + | 14-16| + | 16-20 | + | 20-23| + | 23-30| + | 30-2 | + |
2-4|+ |4-5|+|5-9|+|9-10|
= 55 floors
```

LOOK: The next floor is the closest increasing floor (goes reverse when it reaches the end).

```
| 11-12|+ | 12-14 | + | 14-16| + | 16-20 | + | 20-23| + | 23-30 | + | 30-10 | + |
10-9| + |9-5| + |5-4|+ |4-2|
=47 floors
```

