
1 Deadlines are Marching

Example output from testing script where Int1 = 3, Int2 = 7. Any of the listed
results were allowed, based on assumptions submissions made.

>>> running FIFO...

[0 4 7 5 8 1 2 6 9 3] . ACT = 13.9 . TCT = 29

[0 4 7 5 8 1 2 6 9 3] . ACT = 16.4 . TCT = 36

[0 4 7 5 8 1 2 6 9 3] . ACT = 16.7 . TCT = 36

[0 4 7 5 8 1 2 6 9 3] . ACT = 19.3 . TCT = 36

[0 4 7 5 8 1 2 6 9 3] . ACT = 16.4 . TCT = 36

[0 4 7 5 8 1 2 6 9 3] . ACT = 16.7 . TCT = 36

[0 4 7 5 8 1 2 6 9 3] . ACT = 19.3 . TCT = 36

>>> running LIFO...

[0 5 2 6 3 9 1 8 4 7] . ACT = 11.0 . TCT = 29

[0 5 2 3 6 9 1 8 4 7] . ACT = 15.8 . TCT = 36

[0 5 2 6 3 9 1 8 4 7] . ACT = 13.7 . TCT = 36

[0 5 2 6 3 9 1 8 4 7] . ACT = 12.7 . TCT = 36

[0 5 2 3 6 9 1 8 4 7] . ACT = 15.8 . TCT = 36

[0 5 2 6 3 9 1 8 4 7] . ACT = 13.7 . TCT = 36

[0 5 2 6 3 9 1 8 4 7] . ACT = 12.7 . TCT = 36

>>> running SJF...

[4 0 1 2 5 3 8 9 6 7] . ACT = 8.9 . TCT = 29

[4 0 1 5 3 8 9 2 6 7] . ACT = 11.4 . TCT = 36

[4 0 1 2 5 8 9 6 3 7] . ACT = 10.4 . TCT = 36

[0 5 2 1 3 9 6 4 8 7] . ACT = 12.0 . TCT = 36

[4 0 1 5 3 8 9 2 6 7] . ACT = 11.4 . TCT = 36

[4 0 1 2 5 8 9 6 3 7] . ACT = 10.4 . TCT = 36

[0 5 2 1 3 9 6 4 8 7] . ACT = 12.0 . TCT = 36

>>> running SRTF...

[4 0 1 2 3 5 8 9 6 7] . ACT = 8.9 . TCT = 29

[4 0 1 5 3 8 9 2 6 7] . ACT = 11.4 . TCT = 36

[4 0 1 2 5 8 9 6 3 7] . ACT = 10.4 . TCT = 36

[0 1 2 5 3 9 6 4 8 7] . ACT = 12.0 . TCT = 36

[4 0 1 5 3 8 9 2 6 7] . ACT = 11.4 . TCT = 36

[4 0 1 2 5 8 9 6 3 7] . ACT = 10.4 . TCT = 36

[0 1 2 5 3 9 6 4 8 7] . ACT = 12.0 . TCT = 36

>>> running EDF...

[4 0 8 1 2 5 7 6 3 9] . ACT = 11.1 . TCT = 29

[4 0 8 1 2 5 7 6 3 9] . ACT = 14.4 . TCT = 36

[4 0 8 1 2 5 7 6 3 9] . ACT = 13.1 . TCT = 36

[4 0 8 1 2 5 7 6 3 9] . ACT = 17.5 . TCT = 36

1

[4 0 8 1 2 5 7 6 3 9] . ACT = 14.4 . TCT = 36

[4 0 8 1 2 5 7 6 3 9] . ACT = 13.1 . TCT = 36

[4 0 8 1 2 5 7 6 3 9] . ACT = 17.5 . TCT = 36

2 Not a Mathematician

2.1 Proof of claim

Consider task set {t1, t2, ..., tn}, li denotes the time it takes to finish ti. Without
lost of generality, we can assume li ≤ lj for i < j.

Now assume there is an execution order that achieves better average comple-
tion time than SJF. Denote it as ti1 , ti2 , ..., tin . Then in this order, there exists
some j < k such that lij > lik.

The average completion time of this execution will be

T1 =
1

n
(nli1 +(n−1)li2 + ...+(n+1−j)lij + ...+(n+1−k)lik + ...+2lin−1 + lin)

If we switch execution of tij and tik in this order, the average completion time
will be

T2 =
1

n
(nli1 +(n−1)li2 + ...+(n+1−j)lik + ...+(n+1−k)lij + ...+2lin−1 + lin)

T2 − T1 =
1

n
((k − j)lik + (j − k)lij)

=
1

n
(j − k)(lij − lik)

Because j < k, lij > lik , we have T2 − T1 < 0. So for any pair of tasks which
executes in reverse order of requiring time, switching them will always reduce
average completion time. So SJF leads to optimal average completion time.

2.2 Average Completion Time

Because we use SJF scheduling policy, ti will be served before tj for i < j. So
these n tasks will be served in order from t1 to tn.

We can compute the completion time of ti:

ci =

i∑
j=1

li

Now we compute average completion time of T :

c̄ =

n∑
i=1

ci/n =

n∑
i=1

i∑
j=1

li/n

=
nl1 + (n− 1)l2 + ... + 2ln−1 + ln

n

2

2.3 Expectation of average of Monkey Scheduling

Example output from testing script where Int1 = 3, Int2 = 7.

remainSum = 61.0

ACT: 41.25

2.4 Expectation of average n ≥ 10

Denote s :=
∑n

i=1 li. Then

E[c̄] = E[

n∑
i=1

ci/n] = (

n∑
i=1

E[ci])/n

= (nli1 + (n− 1)li2 + (n− 2) · s− li1 − li2
n− 2

+ ... + 2 · s− li1 − li2
n− 2

+
s− li1 − li2

n− 2
)/n

=
1

n
(nli1 + (n− 1)li2 +

∑n
i=1,i6=i1,i6=i2

li

n− 2
· (n− 1)(n− 2)

2
)

=
1

n
(nli1 + (n− 1)li2 +

n∑
i=1,i6=i1,i6=i2

li ·
n− 1

2
)

3 Network 101

Denote Int1 with i1, and Int2 with i2.

3.1 One packet A → B

2

3
· 10−3 +

2

3
· 10−2 + 10−2 +

2

3
· 10−3 = (

4

3
· 10−3 +

5

3
· 10−2)s

At switch A:

104 + ii · 103

106
= 10−2 + i1 · 10−3 = (1 +

i1
10

) · 10−2s

At switch B:

104 + ii · 103

500× 1000
=

10 + i1
5

· 10−2 = (2 +
i1
5

) · 10−2s

At switch C, same as switch A. At switch D,

104 + ii · 103

2 · 106
= (0.5 +

i1
20

) · 10−2s

Total time:

Store and forward

4

3
·10−3+

5

3
·10−2+(1+

i1
10

+2+
i1
5

+1+
i1
10

+0.5+
i1
20

)·10−2 = (6.3+0.45i1)·10−2s

3

Forward immediately

4

3
· 10−3 +

5

3
· 10−2 + (2 +

i1
5

) · 10−2 = (3.8 + 0.2i1) · 10−2s

3.2 Sending one file

• How long # chunks: 500 + 50ii
actual chunk size: 2040 bytes
Total time:

2

3
· 10−3 + 2040× 8× (500 + 50i1)/106

• Goodput

106 · 2000

2040
=

50

51
· 106

3.3 N P -bit packet

Packets dropping only happens at B.

3.3.1 If Store and Forward

processing time cannot be ignored:

• # packets dropped: d(N − 10)/2e

• Index of dropped packets: 2i + 1 for i ≥ 5

or ignore processing time (the first bit of packet 6 leaves at exactly the same
time the first bit of packet 11 arrives)

• # packets dropped: b(N − 10)/2c

• Index of dropped packets: 2i for i ≥ 6

3.3.2 If Forward Immediately

• # packets dropped: b(N − 10)/2c

• Index of dropped packets: 2i for i ≥ 6

Explanation: Bandwidth of B→ C is half of A→ B. So in the process one
packet being sent from B, two packets arrives at B from A.

Assuming B begins sending a packet after receiving the whole packet. So at
the time the whole packet 1 leaves B, packet 2 and 3 are in buffer;

at the time the whole packet 2 leaves B, packet 3, 4, 5 are in buffer;
3 leaves, 4, 5, 6, 7 in buffer;
4 leaves, 5, 6, 7, 8, 9 in buffer;
5 leaves, 6, 7, 8, 9, 10 in buffer. 11 wants to get in too, but buffer is full.
6 leaves, 7, 8, 9, 10, 12 in buffer. 13 dropped.

4

....
If B begining sends a packet as it receives the first bit, then

at the time the whole packet 1 leaves B, packet 2 is in buffer;
at the time the whole packet 2 leaves B, packet 3, 4 are in buffer;
3 leaves, 4, 5, 6 in buffer;
4 leaves, 5, 6, 7, 8 in buffer;
5 leaves, 6, 7, 8, 9, 10 in buffer;
6 leaves, 7, 8, 9, 10, 11 in buffer, 12 dropped;
7 leaves, 8, 9, 10, 11, 13 in buffer, 14 dropped;
....

3.4 Lost of maximum rate

3/4

4 The Furthest Distance in the World

Denote Int1 with i1, and Int2 with i2.

4.1 Time for one message

packet: i2 mod 4 + 1
Time for one packet:

T = L · (M/B) + 3L× 10−3

= (3 + i1 mod 4) · 2000 + i2 · 100

1000 + i1 · 100
+ 3(3 + i1 mod 4)× 10−3

Time for whole message:

Tm = L · (M/B) + 3L× 10−3

= (i2 mod 4 + 1)((3 + i1 mod 4) · 2000 + i2 · 100

1000 + i1 · 100
+ 3(3 + i1 mod 4)× 10−3)

4.2 Optimized time

Time for one packet:

T = M/B + (L− 1) · (H/B) + 3L× 10−3

=
2000 + i2 · 100

1000 + i1 · 100
+ (2 + i1 mod 4)(

100 + i1 · 10

1000 + i1 · 100
) + 3(3 + i1 mod 4)× 10−3

Time for whole message:

Tm = (#packets)(M/B + (L− 1) · (H/B)) + 3L× 10−3

= (i2 mod 4 + 1)(
2000 + i2 · 100

1000 + i1 · 100
+ (2 + i1 mod 4)(

100 + i1 · 10

1000 + i1 · 100
) + 3(3 + i1 mod 4)× 10−3)

5

4.3 Virtual circuit

Tm = L · C/B + S/B + 3L× 10−3

= ((3 + i1 mod 4) · 0.8(2000 + i2 · 100) + (1900 + 100i2 − 10i1) · (i2 mod 4 + 1))

6

