Solution Direction to HW1

Yue Guo

September 28, 2016

Abstract

1 TA Game

Graded on "all or nothing" scale, 1 point for each part

Constrained by the if-else clause in for loop, the card A can only followed by card T, and vice versa. So the answer will be in the form of "ATAT..." or "TATA...".

Besides, strings of all different length (from 2 to $2 \cdot (1+k)$) are possible because the execution of two players can interleave in any way.

So the final answer will be all strings expressed in k = n case.

$1.1 \ k = 1$

All possible strings:

AT	TA
ATA	TAT
ATAT	TATA

$1.2 \quad k = 2$

All possible strings:

\mathbf{AT}	TA
ATA	TAT
ATAT	TATA
ATATA	TATAT
ATATAT	TATATA

1.3 k = n

Possible strings:

 $(AT)^i$ for $i \in \{1..n+1\}, n+1$ states; $(AT)^i A$ for $i \in \{1..n\}, n$ states; $(TA)^i$ for $i \in \{1..n+1\}, n+1$ states; $(TA)^i T$ for $i \in \{1..n\}, n$ states;

So total number: 4n + 2

2 Aurora's Addition

Question 2 will be graded as follows:

- Points will be split evenly 5 9 per part
- In part 1, -1 per missing number
- In part 2, -2 per missing number
- Minimum score for both (ie they turned something in that made it look like they attempted it) is 1
- It is possible that they may have the same 2 numbers if they match, quickly check netIds to see they did it right, count as right
- In other cases investigate further. If they have 3 numbers, it is likely but not guaranteed they are missing one

2.1 Call Add Once

There may be other schedules leading to outputs below. Only one possible schedule listed here.

Possible output	Possible schedule
6	$\texttt{if } \delta < 0(\texttt{MainLoop}) \rightarrow y = x - \delta(\texttt{MainLoop}) \rightarrow x = a(\texttt{Add})$
Int1+6	$\texttt{if } \delta < 0(\texttt{MainLoop}) \rightarrow x = a(\texttt{Add}) \rightarrow y = x - \delta(\texttt{MainLoop}) \ to \ \delta = d \ (\texttt{Add})$
Int1 + Int2	$x = a(\texttt{Add}) o \delta = d \; (\texttt{Add}) o \texttt{if} \; \delta < 0(\texttt{MainLoop})$
Int1 - Int2	$\texttt{if } \delta < 0(\texttt{MainLoop}) \rightarrow x = a(\texttt{Add}) \rightarrow \delta = d \; (\texttt{Add}) \rightarrow y = x - \delta(\texttt{MainLoop})$

2.2 Call Add Twice

Possible Output	Case
6, Int1 + 6, Int1 + Int2, Int1 - Int2,	(second notify before waiting)
(6, Int1 - Int2)	
(Int1+6, Int1-Int2)	$\delta = -$ Int2 after second if and before $y = x + \delta$
(Int1+Int2,Int1-Int2)	y = -1102 after second 11 and before $y = x + y$
(Int1-Int2,Int1-Int2)	
(6, Int1 + Int2)	$\delta = -\text{Int2}$ after second if and after $y = x + \delta$
(Int1+6, Int1+Int2)	
(Int1+Int2,Int1+Int2)	or $\delta = -$ Int2 before second if
(Int1 - Int2, Int1 + Int2)	$01 \ 0 = -1112$ before second 11

3 To Be or Not To Be There

Question 3 will be graded on a all or nothing scale:

- The answers go like this: Same, Different, Different, Same, Stuck, Stuck
- Each is worth half a point

CLARIFICATION:

- Sequential is 1 a) and 2 a)
- Interleaved_v1 is 1 b)c)
- $interleaved_v2 is 2 b)c)$

We denote: $p_A \leftarrow select_party(A)$ $p_B \leftarrow select_party(B)$

3.1 Sequential Case

 (p_A, p_A)

When B gets to the if clause, A has already written p_A on the whiteboard. So B jumps to else case and set $p[B] := whiteboard = p_A$

3.2 Interleaved Case 1

 (p_A, p_B)

Because they execute lines in turn, both of them find whiteboard= \emptyset when they reach if clause. So in the next line A sets $p[A] := p_A$ and B sets $p[B] := p_B$.

3.3 Interleaved Case 2

 (p_A, p_B)

A have set its own choice $p[A] := p_A$ but have not written to whiteboard yet. So B also enters the case whiteboard= \emptyset and sets its own choice $p[B] := p_B$.

3.4 For More Complex Case

 $(1)(p_A, p_A)$

Same case as explained above.

(2)Getting stuck

A sets alice_busy=true, and then B sets bob_busy=true immediately. Then A begins to wait for B and B begins to wait for A. Both of them get stuck.

(3)Getting stuck

A is still busy (alice_busy=true) till select_party(i) of A. Then B begins to execute and wait for A at the while loop. Now A is waiting for B to execute the entire function and B can never finish execution before A set alice_busy=false. Both of them get stuck.