
CS 4410 Operating Systems Prelim 2, Fall 2015
Profs. Bracy and Van Renesse

NAME: NetID:

• This is a closed book examination. You have 120 minutes. No electronic devices
of any kind are allowed.

• You must fill in your name and NETID above and at the top of each (odd-numbered) page.
If you fail to do so, we will take off 1 point for each omission.

• Show your incomplete work for partial credit. Make any other assumptions as necessary
and document them. Brevity is key.

• Please write your solutions within the provided boxes as much as possible. Write clearly.
Use the scratch paper at the end if you need to practice your answer first.

Question Points
Possible

0: Omitting Name or NetID −2

1: Multiple Choice 20

2: Alternating Bit Protocol 20

3: Hand-over-Hand 20

4: Oldie but Goodie 20

5: All’s Well That Ends Well 20

2

[3]	d)	RPC.	Which	of	the	following	statements	about	Remote	Procedure	Calls	(RPC)	are	
true?	Select	all	that	apply.
(A) RPCs	require	the	programmer	to	construct	correctly	 formatted	network	messages.
(B)	A	Remote	Procedure	Call	could	support	a	Python	program	running	on	Linux	

to	provide	a	service	to	a	C++	program	running	on	Windows.
(C) After	the	client	and	server	stubs	are	compiled,	the	server	program	must	then	

define	the	server’s	interface	using	an	Interface	Definition	Language	(IDL).
(D)	If	you	look	at	code	that	invokes	a	Remote	Procedure	Call,	the	call	would	be	

indistinguishable	from	a	local	procedure	call.

Your Answer:

[2]	c)	Caching	and	Page	Tables.	Which	of	the	following	statements	about	caching	and	
page	tables	are	true?			Select	all	that	apply.
(A) A	Page	Table	is	a	cache	for	memory.
(B) A	Level	2	Cache	is	a	cache	for	a	Level	1	cache.
(C) A	2-Level	Page	Table	is	a	cache	for	a	1-Level	Page	Table.
(D) A	TLB	is	a	cache	for	a	Page	Table.
(E) DRAM	can	be	used	as	a	cache	for	disk.

Your Answer:

[3]	b)	RAID.	Recall	that	RAID	Level	1	mirrors	disks.		In	the	picture,	there	are	
four	stripes,	each	of	which	is	mirrored	once.		Which	of	the	following	
statements	about	this	RAID	Level	1	set-up	are	true?	Select	all	that	apply.

Your Answer: (A)	RAID	Level	1	can	always	detect	when	a	single	bit	flips.
(B)	RAID	Level	1	can	always		detect	and	correct	when	a	single	bit	flips.
(C)	RAID	Level	1	can	always	detect	when	two	bits	flip	(note	that	the	two	bits	may	or	

may	not	be	on	different	disks).
(D)	RAID	Level	1	can	always	detect	and	correct	when	two	bits	flip.
(E)	RAID	Level	1	supports	a	2x	read	performance	over	an	un-mirrored	disk	even	
while	detecting	bit	flip	errors.

[2]	a)	Networking.	Which	of	the	following	are	true	of	UDP?		Select	all	that	apply.
(A) UDP	is	reliable.
(B) UDP	is	ordered.
(C) UDP	has	a	smaller	header	than	TCP.
(D) UDP	controls	network	congestion.
(E) UDP	is	the	predominant	protocol	 for	all	web	traffic.

Your Answer:

[20 pts] 1. Multiple Choice Questions

3

[3]	h)	Networking.	Which	of	the	following	statements	about	Ethernet’s	Carrier	Sense	
Multiple	Access	/	Collision	Detection	(CSMA/CD)	Protocol	are	true?	Select	all	that	apply.
(A) multiple	hosts	use	CSMA/CD	 to	share	the	same	Ethernet	physical	network.
(B) CSMA/CD	has	senders	sense	whether	the	Ethernet	is	currently	 in	use.
(C) CSMA/CD	has	senders	sense	to	determine	whether	a	collision	has	transpired.
(D)	CSMA/CD	prevents	any	single	host	from	monopolizing	the	network.
(E)	CSMA/CD	guarantees	packet	delivery.

Your	Answer:	

[2]	g)	File	Systems.	Which	of	the	following	statements	about	Unix-like	File	Systems		
(UFS)	are	true?	Select	all	that	apply.
(A) A	File	System	Consistency	Checker	detects	random	bit	flips	in	the	data	blocks	of	the	

file	system.
(B) When	completed,	every	block	 in	a	consistent	File	System	must	be	marked	as	either	

free	or	 in	use.
(C) In	a	correctly	structured	Directory	System,	two	distinct	paths	cannot	 lead	to	the	

same	file.
(D) A	Directory	can	consist	of	indirect	blocks	and	data	blocks,	just	like	a	File.

Your	Answer:	

[3]	f)	Page	Tables.	Which	of	the	following	statements	about	page	tables	are	true?
Select	all	that	apply.
(A) Multi-level	page	tables	always	require	more	space	than	single-level	page	tables.
(B) Multi-level	page	tables	generally	have	a	slower	look-up	 time	than	single-level	page	

tables.
(C)	All	page	table	structures	that	are	not	a	simple	single-level	page	table	have	the	
fundamental	structure	of	an	array	of	arrays.
(D)	Page	tables	need	to	be	invalidated	on	a	context	switch.

Your	Answer:	

1.	(Continued)

[2]	e)	Page	Tables.	In	a	clip	of	the	movie	The	Social	Network	that	was	shown	in	class,	
the	Harvard	professor	asks	a	question	about	single-level	page	tables,	paraphrasing:	
“assuming	PTEs	have	8	status	bits,	what	would	those	status	bits	be?”	Mark	Zuckerberg	
answered,	correctly	according	to	the	professor, “1	valid	bit,	1	modify	bit,	1	reference
bit	and	5	permission	bits.”		The	professor’s	question	 is:			(Select	all	that	apply.)
(A) impossible	to	answer	as	there	is	not	enough	information
(B) a	very	difficult	question	that	only	a	serious	geek	could	answer
(C) so	easy	that	anyone	with	a	basic	knowledge	of	computer	 science	could	have	

answered	it
(D) really	outdated

Your	Answer:	

NETID:________

4

[20pts]		2.	Alternating	Bit	Protocol
This	question	is	to	test	your	understanding	of	retransmission	protocols	such	as	TCP.		Suppose	there	are	two	computers,	
X	and	Y,	connected	by	a	single	physical	network	link.		Packets	can	flow	in	both	directions.	Packets	can	get	lost,	but	they	
can’t	get	re-ordered	 or	damaged.		While	unreliable,	if	one	computer	keeps	retransmitting	the	same	packet	(with	the	
same	contents),	eventually	at	least	one	copy	will	arrive	at	the	other	computer.		The	minimum	latency	on	the	link	(the	
time	between	sending	a	packet	and	receiving	it)	is	1	millisecond	and	the	maximum	packet	size	is	101	bytes.		The	
bandwidth	is	unlimited.		Note	that	because	of	the	set-up,	packets	do	not	need	addresses:	 a	packet	sent	on	one	end	of	
the	link	is	automatically	destined	for	the	other.		The	length	of	a	packet	p is	given	by	function	length(p).

Pat	designs	an	“alternating	bit	protocol"	for	reliable	communication	from	X	to	Y:		X	and	Y	both	maintain	a	sequence	
number	that	counts	the	number	of	packets	sent	and	received,	respectively.		A	packet	has	two	fields:	a	1	byte	header	
and	a	payload	of	at	most	100	bytes.		Having	only	limited	size,	the	header	cannot	store	the	entire	sequence	number.		In	
this	case,	the	1-byte	header	stores	the	sequence	number	mod	2,	that	is,	the	header	only	contains	the	least	significant	
bit	of	the	sequence	 number.		Packets	from	X	to	Y	are	data	packets,	and	packets	from	Y	to	X	are	acknowledgment	
packets.

The	send	function	on	X	is	as	below: The	corresponding	receive	function	on	Y	is:

var recv_seq initially 0;

fun reliable_receive():
# Keep	receiving	packets	until	a	packet
# arrives	with	the	expected	sequence	 number
for ever:

# Wait	for	data	packet	and	prepare	ACK
var data = link.receive(∞)
var ack = new Packet()
ack.seq = data.seq
ack.payload = None

# If	the	data	packet	has	the	right	sequence
# number,	increment recv_seq,
# send	the	ack,	and	return	the	payload
if data.seq == recv_seq mod 2:
recv_seq += 1
link.send(ack)
return data.payload

# send	acknowledgment	in	any	case
link.send(ack)

var send_seq initially 0;

fun reliable_send(payload):
if length(payload) > MTU − 1:

return ERROR(“payload	too	large”)

# Keep	trying	until	an	acknowledgment	is	received
for ever:

# Send	a	data	packet
var data = new Packet()
data.seq = send_seq mod 2
data.payload = payload
link.send(data)

# Wait	for	an	ack packet	with	the	same	sequence
# number,	timing	out	after	5	seconds.		If	successful
# increment	send_seq and	return	SUCCESS.
var ack = link.receive(5)
if ack != TIMEOUT:
if ack.seq == send_seq mod 2:
send_seq += 1
return SUCCESS

Basically,	the	sender	sends	even	packets	(0,	2,	4,	…)	with	a	header	containing	0	and	odd	packets	(1,	3,	5,	…)	with	a	
header	containing	1.		For	each	packet,	the	sender	keeps	sending	the	same	packet	until	it	gets	an	acknowledgment	with	
the	same	 bit	in	the	header.		The	receiver	acknowledges	all	packets	it	receives.		It	delivers	the	first	packet	with	a	0	
header,	then	the	first	packet	with	a	1	header,	and	then	it	goes	back	to	0	and	so	on,	alternating	between	0	and	1.

Answer	the	following	questions:

a) [3]	True	or	False:	It	is	an	invariant	that	((send_seq ==	 recv_seq)	or	(send_seq +	1	==	 recv_seq)).	

a) [2]	What	layer	protocol	is	this:		Data	Link,	Network,	Transport,	or	Application?

d) [3]	True	or	False:	if	packets	could	be	re-ordered	on	the	link,	the	protocol	still	works.

d) [3]	True	or	False:		if	the	protocol	used	all	8	bits	in	the	header	and	used	an	8-bit	
sequence	number	(0	…	255)	instead	of	a	1-bit	sequence	number	(i.e.,	replacing	mod 2
with	mod 256),	the	protocol	would	work	even	if	packets	could	get	arbitrarily	re-
ordered?

• If	the	probabilities	of	packet	loss	on	the	links	that	connect	a	source	and	destination	are	
independent	of	one	another,	then	it	is	not	strictly	necessary	to	implement	per-link	
reliability:	end-to-end	retransmission	is	sufficient	to	provide	reliability.		For	some	
applications	an	end-to-end	acknowledgment	is	even	necessary,	for	example	in	the	case	of	
reliable	file	transfer	between	hosts	that	may	crash.

• Implementing	reliability	on	intermediate	links	is	useless	and	one	should	never	do	it.

• Implementing	reliability	on	intermediate	links	induces	overhead	(for	example,	buffering	for	
retransmission	or	computing	checksums)	even	for	end-hosts	that	don’t	need	it.

g)			[3]	Which	of	the	following	statements	are	consistent	with	the	end-to-end	design	principle?		Check	either	True	or	
False	(no	points	if	you	check	both):

True False

5

f) [3]	Suppose	the	protocol	used	an	8-bit	sequence	number	and	windows	of	at	most	10	
packets	so	that	up	to	10	packets	could	be	sent	before	an	acknowledgment	was	
required,	what	would	the	maximum	payload	transmission	rate	be	(in	bytes/sec)?		
(Recall	that	the	bandwidth	is	unlimited,	but	the	end-to-end	latency	is	not.)

Briefly	explain	(or	provide	the	work	for)	your	answer:

c) [3]	What	is	the	maximum	payload	transmission	rate	in	bytes	/	second	from	the	sender’s	
perspective?		(Think	about	the	best	case	in	which	no	packets	get	lost.)

Briefly	explain	(or	provide	the	work	for)	your	answer:

NETID:________

6

[20pts]		3.	Hand-over-Hand

1 class Node: #	node	in	linked	list
2 def__init__(self,	 value,	next):
3 self.lock =	Lock()
4 self.value =	value
5 self.next =	next #	another	node	or	None

7 defnewList():
8 returnNode(−∞,	Node(∞,	None))

10 defhelper_find(list,	value):
11 before	=	list
12 before.lock.acquire()
13 after	=	before.next
14 after.lock.acquire()
15 while after.value <	value:
16 before.lock.release()
17 before	=	after
18 after	=	before.next
19 after.lock.acquire()
20 return before,	after

22 def contains(list,	value):
23 node	=	list
24 while node.value<	value:
25 node	=	node.next
26 return node.value==	value

28 def size(list):
29 total	=	−1
30 node	=	list
31 while node.value<	∞:
32 node	=	node.next
33 total	+=	1
34 return total

36 defadd(list,	value):
37 before,	after	=	helper_find(list,	value)
38 if after.value !=	value:
39 before.next =	Node(value,	after)
40 before.lock.release()
41 after.lock.release()

43 def remove(list,	value):
44 before,	after	=	helper_find(list,	value)
45 if after.value ==	value:
46 before.next =	after.next
47 before.lock.release()
48 after.lock.release()

50 mylist =	newList()			#	example	starts	here
51 add(mylist,	3);	add(mylist,	7)
52 print size(mylist)					#	prints	“2”

Lines	1-48	in	the	code	above	implement	a	concurrent,	thread-safe,	and	deadlock-free	sorted	linked	list	of	distinct	
numbers,	assuming	the	following	two	conditions	hold:

• ∞	is	larger	than	any	number,	and	–∞	is	smaller	than	any	number;
• reading	and	writing	object	references	(such	as	node.next)	are	atomic.

The	list	interface	is	as	follows	(lines	50-52	serve	to	illustrate	some	of	these):
• mylist = newList() #	creates	a	new	list
• contains(mylist, x) #	returns	whether	mylist contains	x,	where	–∞	<	x	<	∞
• size(mylist) #	returns	the	size	of	the	list
• add(mylist, x) #	adds	number	x	to	the	list,	where	–∞	<	x	<	∞
• remove(mylist, x) #	removes	number	x	from	the	list,	where	–∞	<	x	<	∞

The	list	implementation	uses	two	administrative	“book-end”	nodes	with	values	–∞	and	∞.		The	add() and	
remove() operations	are	updates,	and	these	require	locks.		Locks	are	acquired	in	a	“hand-over-hand”	fashion:		going	
through	the	list,	the	lock	on	the	next	node	is	acquired	before	the	lock	on	the	last	node	is	released.		A	thread	may	thus	
hold	up	to	two	locks	at	a	time.		The	helper	function	helper_find(list, value) finds,	locks,	and	returns	two	
adjacent	nodes	before and	after in	the	list	such	that	before.value < value ≤ after.value.		Because	
of	the	book-end	nodes,	helper_find is	always	successful.

The	read-only	size() and	contains() functions	do	not	acquire	any	locks	and	can	run	lock-free!

-∞ 3 7 ∞mylist

7

[0pts]	The	implementation	of	the	list	is	in	the	style	of	Mesa	monitors.		(This	is	an	example	question	
and	answer.)

[2pts]	The	order	in	which	locks	are	released	in	lines	40/41	or	47/48	matters	for	correctness.

[2pts]	The	code	is	deadlock-free	because	if	two	threads	that	run	add() or	remove() acquire	
the	same	 two	locks,	they	acquire	them	in	the	same	order.	

[1pt]	A	thread	running	add() or	remove()acquires	locks	in	a	nested	fashion,	i.e.,	if	it	requires	
lock	L1	and	then	L2,	it	will	first	release	L2	and	then	L1.

[2pts]	It’s	an	invariant	at	line	20	that			after == before.next holds.

[2pts]	In	this	code	it’s	an	invariant	that	if	a	thread	holds	locks	on	two	nodes	containing	x	and	y	
resp.,	x	<	y,	then	no	other	thread	can	insert	or	remove	nodes	with	values	in	the	range	[x,	y].

[2pts]	A	list	may	contain	duplicates	in	case	threads	invoke	add(list, x)multiple	times	
(possibly	concurrently)	with	the	same	x.

[2pts]	The	code	may	accidentally	remove	a	bookend	node	if	a	thread	invokes	remove(x) on	a	
value	x	that	is	not	currently	in	the	list.

[2pts]	If	one	thread	invokes	add(list, x),	and	another	thread	invokes	remove(list, x)
concurrently,	then,	assuming	there	are	no	other	operations	on	the	list,	it	is	guaranteed	that	x	is	in	
the	list	after	both	operations	complete.

[1pt]	If	one	thread	invokes	add(list, x),	and	another	thread	invokes	remove(list, x)
concurrently,	then,	assuming	there	are	no	other	operations	on	the	list,	it	is	guaranteed	that	x	is	
not in	the	list	after	both	operations	complete.

[2pts]	Suppose	a	thread	invokes	add(list, x) at	time	t1,	and	the	call	returns	at	time	t2.		Also	
suppose	any	call	to	remove(list, x) finished	before	t1	and	no	thread	invokes	
remove(list, x) at	time	t1	or	later.		Then	any	call	to	contains(list, x) after	time	t2	
will	return	True.

[2pts]	Same	setting	as	the	previous	question.		Any	call	to	contains(list, x) after	 time	t1	
(instead	of	after	time	t2)	is	guaranteed	to	return	True.

True False Check	True	or	False	for	each	of	the	following	questions:

✓

NETID:________

8

[20pts]		4.	Oldie	 but	Goodie

The	PDP11 was	a	series	 of	computers	sold	by	Digital	Equipment	Corp.	(DEC)	from	1970	and	into	the	nineties.		A	PDP11	
computer	has	a	16-bit	virtual	address	space,	where	each	address	identifies	a	byte,	for	a	total	of	64	Kbytes.	 A	page	is	213

bytes	=	8	Kbytes,	and	thus	the	virtual	address	space	of	a	process	consisted	of	8	pages.	 A	page	table	entry	(PTE)	had	a	9-
bit	frame	(=	physical	page)	number,	a	Valid	bit,	and	a	Writable	bit.
a) [5pts]	What	is	the	maximum	physical	memory	(in	Kbytes)	in	a	PDP11?

(A	Kbyte	is	1024	bytes.)

b)	 [9pts]	Consider	the	following	page	table	of	a	process:

Page Valid Frame Writable

0 yes 0x003 no

1 yes 0x001 no

2 yes 0x008 yes

3 no N/A N/A

Page Valid Frame Writable

4 no N/A N/A

5 no N/A N/A

6 no N/A N/A

7 yes 0x004 yes

Fill	in	the	following	table:

Virtual Address Valid	(yes,	no) Physical Address	(if	 valid)	in	hexadecimals Writable (yes,	no)

0x1234

0x4321

0x8888

c) [6pts]	The	Bogux O/S	running	on	the	PDP11	uses	“Local	Replacement”,	meaning	that	it	assigns	a	certain	number	of	
physical	frames	to	each	process.	 As	a	result,	two	processes	never	contend	for	the	same	frame.	 However,	if	a	lot	of	
processes	are	running,	the	number	of	frames	 per	process	may	well	be	fewer	than	8.		Assume	a	situation	in	which	
each	process	has	three	frames.		Suppose	the	page	reference	 string	of	some	process	is

0,	7,	2,	0,	7,	1,	0,	3,	1,	2
Initially	no	pages	are	mapped	to	physical	frames.	Now	consider	the	state	of	the	process’s	page	table	after	the	first	7	
references	 (i.e.,	after	 page	accesses	0	7	2	0	7	1	0).	 Which	(up	to	three)	pages	 are	mapped	at	this	time	assuming	one	of	
the	following	page	replacement	schemes,	and	how	many	page	faults	have	occurred	then.		Also	show	in	the	last	column	
how	many	page	faults	occur	in	total	after	all	10	references?

Scheme all page numbers	of	mapped	pages	
after	7	references	(3	max.)

#page	 faults	
after	7	references

#page faults	total	
(after	10	references)

First	In	First	Out
(by	way	of	example) 0		1		2 5 7
LRU	(Least	Recently Used)

OPT (Belady)

9

[20pts]		5.	All’s	Well	That	Ends	Well

Suppose	you	have	a	Terabyte	partition	on	a	disk.		To	be	precise,	the	partition	has	240 bytes	on	it,	subdivided	into	blocks	
of	4Kbytes	(4096	=	212 bytes).

a) [2]	How	many	blocks	are	on	the	partition?
(Write	your	answer	in	the	format	2xxx.)

You	want	to	put	a	Unix-like	file	system	on	the	partition,	with	one	superblock	in	position	0,	followed	by	a	sequence	of	
blocks	filled	with	i-nodes.		Each	i-node	is	128	=	27 bytes.		You	want	to	have	enough	i-nodes	to	store	220 (about	a	million)	
files.

b)		[3]	How	many	blocks	do	you	need	to	store	all	these	i-nodes?
(Answer	 in	2xxx format.)

A	block	pointer	identifies	a	block	on	the	partition,	and	is	4	bytes	long	(enough	to	identify	232 blocks).		An	“indirect	
block”	(a	block	filled	with	block	pointers)	can	have	4096	/	4	=	1024	(210)	block	pointers.

Suppose	now	that	an	i-node	contains	13	block	pointers.		The	first	10	point	to	the	first	10	data	blocks.		The	next	three	
point	to	an	indirect	block,	a	double	indirect	block,	and	a	triple	indirect	block.		The	maximum	file	size	can	be	
approximated	by	just	the	number	of	data	blocks	reachable	from	the	triple	indirect	block	pointer	(the	rest	is	negligible).	

c)		[3]	In	theory,	how	much	data	(in	bytes)	could	be	accessed	from	the	triple	
indirect	block	pointer	in	the	i-node?		For	this	question,	assume	the	size	of	the	
disk	is	unbounded. (Answer	 in	2xxx format.)

Briefly	explain	(or	provide	the	work	for)	your	answer:

Briefly	explain	(or	provide	the	work	for)	your	answer:

Briefly	explain	(or	provide	the	work	for)	your	answer:

NETID:________

10

Question	5.	(cont’d)

d)		[3]	Assume	now	that	the	file	system	cache	is	empty	except	for	the	superblock.		
Assume	the	file	with	i-node	#2015	has	the	string	“Hello	World”	in	it	(that	is,	the	
file	is	just	11	bytes	long).		How	many	disk	accesses	would	be	necessary	to	read	the	
contents	of	this	file,	given	that	you	know	the	i-node	number?	

Briefly	explain	your	answer:

e)		[3]	In	reality	this	file’s	i-node	number	has	to	be	retrieved	first.		Suppose	the	
name	of	the	file	is	/etc/test.txt.		Assume	 that	the	contents	of	each	directory	fits	
in	a	single	block.		The	root	directory	/	is	described	in	i-node	#2,	and	/etc is	in	i-
node	#5.		Again,	assuming	only	the	superblock	is	in	the	cache	and	a	cache	large	
enough	so	the	same	block	never	has	to	be	read	more	than	once,	how	many	disk	
accesses	 are	required	to	read	the	file?	

Briefly	explain	your	answer:

11

Question	5.	(cont’d)

f)		[3]	File	/etc/shakespeare.txt (i-node	#7)	contains	the	complete	works	of	
Shakespeare	 (222 bytes	or	about	4	Megabytes).	 	Assuming	only	the	superblock	is	
in	the	cache,	how	many	disk	accesses	 are	required	to	retrieve	the	whole	thing?

g)		[3]	Suppose	somebody	wants	to	add	the	text	"All's	Well	That	Ends	Well.”	to	
the	end	of	the	complete	works	of	Shakespeare	 (the	new	text	will	be	contained	
in	a	new	data	block	at	the	very	end).	 Suppose	that	the	file	system	has	only	the	
superblock	in	its	cache	and	can	allocate	free	blocks	without	going	to	the	
disk.	 How	many	disk	reads	and	how	many	disk	writes	are	necessary	 (assuming	
a	“write-through”	cache?		(Assume	that	among	the	i-nodes	only	i-node	#7	has	
to	be	updated	for	this	operation.)

Briefly	explain	your	answer:

a)
Briefly	explain	your	answer:

NETID:________

SCRATCH	PAPER		(WILL	NOT	BE	SCANNED	NOR	CONSIDERED	 FOR	GRADING)

SCRATCH	PAPER		(WILL	NOT	BE	SCANNED	NOR	CONSIDERED	 FOR	GRADING)

SCRATCH	PAPER		(WILL	NOT	BE	SCANNED	NOR	CONSIDERED	 FOR	GRADING)

