CS 4410 Operating Systems Prelim |, Fall 2015
Profs.Bracy and Van Renesse

NAME: NetID:

* This is a closed book examination. You have 120 minutes. No electronic devices
of any kind are allowed.

* Youget1 pointforfilling in yourname and NETID above. You getanother pointifyou fill
in your NETID on each (odd-numbered) page. You getO points forthe wholeexam ifyou
don’tdo anyofthese...

* For Coding Questions: You may use pseudo-code. Descriptions written mostly in
English will getno credit. In additionto correctness, elegance and clarity are important
criteria for coding questions.

» Show yourincomplete work for partial credit. Make any other assumptions as necessary
and documentthem. Brevity is key.

* Please write your solutions within the provided boxes as much as possible. Write clearly.
Use the scratch paperatthe end ifyou need to practice your answer first.

Question Points
Possible
0: Name & NetID 2
1: Multiple Choice 14
2: Multicore Synchronization 15
3: Scheduling 20
4:Threads and Processes 14
5: Synchronization 20
6: Deadlocks 15
Total 100

[14pts] 1. Multiple Choice Questions

[2] a) Which of the following isthe best way to wait for two predicatesto be true?

(A)
with lock:
while not condA or not condB:
if not condA:
condA cv.wait()
if not condB:
condB _cv.wait()

(C)
with lock:
while not condA or not condB:
condA cv.wait()
condB cv.wait()

Check the 12 Commandments

[2] b) Which of the following are (virtually) shared by threads within a single process?
In other words, is it instantiated per process instead of per thread? Select all thatapply.

(A) Heap

(B) Stack

(C) Code / Program Text
(D) Registers

[2] c) Which of the following operations require the executing code to be operating

with high privilege? Select allthat apply.
(A) Implementinga monitor
(B) Performing a semaphore P operation

Your Answer:

(B) A

with lock:

while not condA:
condA cv.wait()

while not condB:
condB_cv.wait()

(D)
with lock:
if not condA or not condB:
while not condA:
condA cv.wait()
while not condB:
condB_cv.wait()

Your Answer:

A,C

Your Answer:

C,D

(C) Accessing the device registersof an 1/0 device, e.g. the disk, keyboard, or network card

(D) Disabling interrupts
(E) Making a system call

NETID: .

[2] d) Which of the following statements about systems calls aretrue? Your Answer:
Select all that apply.

(A) A system callcan be caused by events external to the CPU. C p D

(B) All registersmust be saved when performing a system call.

(C) The old privilege mode must be saved when performing a system call.
(D) The privilege mode must be changed to “kernel mode” when performing a system call.
(E) The system call handler can run on the stack of the user process that issued the call.

[2] e) You are using a semaphore package which provides 3 functions: init (), P(),andV ().
Which of the following changesto the package could affect the correctness of your code?
Select all that apply.

(A) Pis modified so that it busy-waits instead of yieldingwhen a resourceisn’t available.
(B) initis modified sothatit onlyaccepts 0 or 1as aninitial value.

(C) The implementation stores the countinan unsignedint instead of a signed int.

(D) vis modified so that it wakes the thread that most recently called P. B
(E) Asserts are removed fromall threefunctions.

Your Answer:

Recall: implementation should not affect abstraction!!

[2] f) Which of the following statements about deadlockingis true? Your Answer:
Select all that apply.

(A) If a system is not deadlockedat timeT, it can always avoid being deadlocked attime B

T+1.

(B) If asystemis ina safestate at time T, it can always avoid being deadlocked at time

T+1.

(C) When reducing a Resource Allocation Graph, you should begin with the process
which currently holds the most resources.

(D) Modern operating systems use the Banker’s Algorithm to determine whether it is
safe togive a particular process a particular resource.

[2] g) Which of the following statements about threadsis false? Your Answer:
Selectall that apply.

(A) Multi-threading isonly useful on a multi-processor. A , D

(B) Multi-threadingis only useful when a task can be parallelized.

(C) There are performance benefits to running threads of the same process one after the
other on the same processor.
(D) Multi-threading requires operating system support for managing multiple PCBs.

[15pts] 2. Multicore Synchronizationusing Compare-and-Swap

For this question you mayassume reading and writing individual memory locations of size ‘int’ are atomicand that
sizeof(int) ==sizeof(int *), i.e., pointers and integers have the same size. Also, the “C”-like language below is really
pseudo-code. Don'tworry about casting pointers to integers or vice versa. Amemory location isa memory location!
Also, in the solutions you are allowed to busy-wait.

Many CPU architectures provide a Compare-And-Swap ATOMIC bool CAS(int *addr, int oldval, int newval) {
(CAS) instruction with the following semantics (here if (*addr != oldval)

addristhe address of some memory location). Note return FALSE:

that (not counting the fetch of theinstructionitself, *addr = newval;

which is hopefully from the cache) CAS involves a single return TRUE:

read and at most a single write cycle on the memory bus }

(reading and writing *addr):

a) [3]Implement a Test-And-Set function using CAS that does (not counting fetching instructions) a single memory bus
read and at most a single bus write cycle:

bool TAS(int *addr) {

return !CAS(addr, 0, 1);

TAS returns 0 if the lock is successfully grabbed, whereas CAS returns 1 upon success, hence the

-

(negation)

}

b) [3] Using CAS, implement an atomic increment operation: INC(&x) increments x by 1. In the absence of contention
(i.e., no multiple threads trying toincrement *addr at the same time), your code should, at most, read memory twice and
write memory once (i.e., at most three memory bus accesses). You can assume thatlocal functionvariables are kept in

CPU registers.

void|INC(int *addr) {

register int oldval = *addr;
while (ICAS(addr, oldval, oldval + 1))
oldval = *addr;

// Loop requiredin case multiple threads try to update *addratthe same time

NETID:

c) [3] Use CAS to complete the implementation of an append-only lock-free list (i.e., you are not todeclare a separate
variable for a spinlock). Thelist is maintained in reverse order.

structitem{

structitem *prev; Il points to previous item added to the list (null for firstitem)
int value; /[contains the value in this entry
|3
structitem *list= NULL; Il points to last item added to the list (null if list is empty)
void add(int val) { /[add value to the list
structitem *node = malloc(sizeof(struct item));
node->value =val;
node->prev-=list- //replacethese 2 lines
list=node; //with thread-safe code below:
do
node->prev = list;
while (ICAS(&list, node->prev, node);
}

d) [3] The following code checks if valisinthelist. Isit thread-safe? If so, explain what is meant by thread-safety. If not,
explain why not. (add() is the only update operation.)

bool check(int val){

structitem *node = list: Yes. While it is true that check(X) may or may not

while (node != NULL) { find X in case add(X) is executed concurrently, both
if (node->value==val) | are valid executions. add() appears to execute
return TRUE; atomically with respect to check(). A requirement is
node = node->prev; . .
} that check(X) has to find X if add(X) completed
return FALSE: before invoking check(X), and should not find X if
} add(X) is invoked after check(X) completed.

e) [3] Describe advantages of CAS over TAS. Consider, for example, howhard it would be toimplementalock-free
counter or list data structure using either CAS or TAS:

CAS can easily emulate TAS, but CAS makes it possible to build lock-
free counters and data structures. Solutions based on CAS often
require fewer memory accesses and less memory.

[20pts] 3. A LUF-ly Scheduling Algorithm

A creative Cornell student with a strong sense of Ithaca-style fairness came up with a new scheduling policy: Least Used
First (LUF). When given the choice to schedule two processes (jobs) on the run queue, the scheduler will selectthe one
that has used the fewest CPU cycles thus far. In case of atie, the queueis otherwise FIFO. When a process is de-
scheduled it goestothe end of the queue. The CPU should notsite idle when there are processes on the run queue.

Recall that ajob has an arrival time and a duration (the amount of CPU time it will need, in time units). The turnaround
timeisthetime between arrival andthe time the jobfinishes. Theresponsetimeisthetime between arrival andthe
timethejob isfirstscheduled. The waiting time is the total amount of time the job spent on the run queue waiting tobe
scheduled (i.e., for CPU-boundjobsitis tumaround time—durationtime). Assume all jobs are purely CPU-bound.

[8] a) Supposing arunning jobis only pre-empted when a new job arrives (no interrupts), fill the following table:

Job | Arrival Time Duration Turnaround Time Response Time Waiting Time
A 0 25 55 0 30

B 15 25 45 0 20

C 25 5 5 0 0

D 40 5 5 0 0

[8] b) Suppose the clock interrupts the CPU every 2 time units (i.e., at times 0, 2, 4, etc.) andjobs arrivals do not preempt
thecurrent job. Ifajob arrives at the sametimeas a clock interrupt, the job canrunimmediately. Fill in the following:

Job | Arrival Time Duration Turnaround Time Response Time Waiting Time
A 0 25 59 0 34

B 15 25 45 1 20

C 25 5 6 1 1

D 40 5 5 0 0

[4]c) CantheLUF policycause starvation? Explain your answer.

Yes. A process that has been running for a long time
will be starved from CPU cycles if a series of new

processes arrives that only run for a short amount of
time.

NETID: .

[14pts] 4. What doesit do???

[7]1a) Look at the C program below. Write its output inthe box tothe right. FYI: waitpid(pid, &status, 0) waits for
process pid to finish. System calls are underlined---you can assume there won’t be errors. #include’s have been left out.

char array[] = "qwertyuiopasdfghjklzxcvbnm?”;
int len = sizeof(array);, // 26 initially

void mystery(X abcdefghijklmnopgrstuvwxyz
char first =array[0];
int status, i;
::’;J i=dO_: fork(): Run it yourself if you don’t believe it.
if (gid ==0){ fork() is used here to copy the array before
f0r_f(i =1 <_|e?_: i’;+) splitting it. The child retains all the chars
<

! (::rr:;'[[j'lﬂ Ezzray[i]; that are before ‘first’. The parent walits for

telse{ the child, prints ‘first’, and retains the

waitpid(pid, &status, 0); // wait for pid
write(1, &first, 1); /I prints first
for (i=1;i <len; i++)
if (array[i] > first)
array[j++] =array(il;

chars that are after ‘first’. This process is
repeated recursively (tail recursion---can
be converted to loop trivially) until the

} array is empty.
len =j;
if (len> 0) o .,)
mystery(); This kind of “fork and join” pattern is a
common concurrency technique, although
int main(){ in this particular implementation fork() is
mystery(); used for copying and not for concurrency.
return O;
}

[7]1b) Describe briefly how fork()works. Mention PCBs, code, data, and stack segments, CPU registers, fork's
return value, and the run queue. Use active voice (“programis run” = passive, “user runs a program” = active).

When a process forks, the kernel allocates a new PCB and
memory for the new child process and copies the PCB,
segments, and registers of the parent. The kernel assigns a new
process id to the child process, and sets its return value register
to 0. The kernel sets the parent’s return value register to the
child’s process id. The kernel places both processes on the run
queue.

[20pts] 5. Pooling Resources

You areto simulate a pool hall with N pooltables numbered0 to N - 1. Players (threads) that arrive at the pool hall are
looking for tables that have one (preferred) or no players at them. Oncethere aretwo players atatable, they play a
game of pool and then they leave (separately). When both players have left the pool table, the table becomes available
for new players. Fill inthe missing code below usingPython-ish pseudo-code. Make sure to distinguish class variables
from local function variables, and don’t add global ones. Use Mesa locks and condition variables. No busy waiting!

N=8 # number of pooltables
class PoolHall:

def _init_ (self): add additional class variables below if you need them
self.lock =Lock() # monitor lock
self.nAtTable=[0 for tno in range(N)] # number of players at eachtable (at most 2 players)

self.nLeft = [0 for tno in range(N)]
self.tableCond = [Condition(self.lock) fortno in range(N)]
self.availCond = Condition(self.lock)

def player_enters(self): # wait until there’s atable, and then wait for there to be two players at the table. Retum
the table number (index into self.nAtTable)

with self.lock: insert yourcode below
while self.table_avail() < O: # wait for a table
self.availCond.wait()

tno = self.table_avail() # which table is available?

self.nAtTable[tno] +=1 # occupy the table

if self.nAtTable[tno] == 1: # am | the only one?
while self.nAtTable[tno] != 2: # wait for another player

self.tableCond[tno].wait()

else: # table full
assert self.nAtTable[tno] ==
self.tableCond[tno].notify() # notify the waiting player
self.nLeft[tno] =0 # 0 players that have left

return tno # return the table number

class PoolHall continued: N ETlD

def player_exits(self, tno): #Release table tno. Once both players have left, the tableis available again. The players
don’t have to wait forone anotherto leave

with self.lock: insert yourcode below

assert self.nAtTable[tno] == 2 and self.nLeft[tno] < 2

self.nLeft[tno] += 1 # incr. #players leaving
if self.nLeft[tno] == 2: # all players left
self.nAtTable[tno] =0 # make table available

self.availCond.notifyAll() # notify players waiting

#Here’s a handy function youmay like touse. Returns atable number tno if that tableis available. Prefers

#tables with one player waiting over empty tables. Returns-1 if all tables are taken.
def table_avail(self):

fortnoin range(N): if self.nAtTable[tno] == 1: returntno
for tnoin range(N): if self.nAtTable[tno] ==0: returntno
return -1

class Player(Thread):

def __init__(self, poolhall, pid): def run(self):
Thread.__init__(self) while True:
self.poolhall = poolhall tno =poolhall.player_enters()
self.pid =pid print "Player ", self.pid, " got table ", tno

PLAY SOME POOL
poolhall.player_exits(tno)

poolhall =PoolHall()
for pid in range(NPLAYERS):
Player(poolhall, pid).start() # pid = player identifier
ifyou like you canleave some explanation of your code below

[15pts] 6. Variations on Dining Philosophers

Recall the five Dining Philosophers (and five chopsticks) sitting around a circular table: if they all pickup theirright
chopstick before their left, they can end upina deadlocked situation.

a) [4]Intheboxtotheright, drawa Resource Allocation

Graph showing the Philosophers and chopsticks and a 3
deadlocked situation. / O \

b) [3]Assumel philosophers are left-handed and pick up their e
left chopstick first, while the remaining R philosophers are

right-handed and pick up their right chopstick first. Fillout
thefollowing table, indicating yes, no, or depends (describe 2
scenario briefly in the last case).

ﬁq\ob

L R Deadlock Possible? O
5 | 0 | YES (each philosopher picks up
left chopstick first)
4 [1 | NO (symmetry broken)
3 | 2 | NO (ditto)

O O

c) [3] The five philosophers instead decide to place N chopsticks in a heap inthe middle of the table. Philosophers can
now pick up one chopstick at a time, but still need two to eat. Say if deadlock is possible (YES, NO, DEPENDS) in each of
the following cases:

N Deadlock Possible?

<5 YES (each philosopher picks up 0 or 1 chopstick until nothing is left)
> YES (each philosopher picks up 1 chopstick until nothing is left)

>5 NO (always at least one philosopher who can eat)

d) [5] In arecent NASA discovery, planet Mars has three-handed philosophers. Consider a table withfive three-handed
philosophersanda pile of N chopsticks inthe middle of the table. Each philosopher needs 3 chopstickstoeat. Whatis
the smallest N such that deadlock is impossible?

With 10 chopsticks, each philosopher
could pick uptwo chopsticks and end

1 1 up deadlocked. With 11, thereis
always at least one philosopher who

can eat.

10

