
1

Question Points
Possible

0: Name & NetID 2

1: Multiple Choice 14

2: Multicore Synchronization 15

3: Scheduling 20

4:Threads and Processes 14

5: Synchronization 20

6: Deadlocks 15

Total 100

CS 4410 Operating Systems Prelim I, Fall 2015
Profs. Bracy and Van Renesse

NAME: NetID:

• This is a closed book examination. You have 120 minutes. No electronic devices
of any kind are allowed.

• You get 1 point for filling in your name and NETID above. You get another point if you fill
in your NETID on each (odd-numbered) page. You get 0 points for the whole exam if you
don’t do any of these…

• For Coding Questions: You may use pseudo-code. Descriptions written mostly in
English will get no credit. In addition to correctness, elegance and clarity are important
criteria for coding questions.

• Show your incomplete work for partial credit. Make any other assumptions as necessary
and document them. Brevity is key.

• Please write your solutions within the provided boxes as much as possible. Write clearly.
Use the scratch paper at the end if you need to practice your answer first.

2

[2]	a)	Which	of	the	following	is	the	best	way	to	wait	for	two	predicates	to	be	true?

(A)
with lock:

while not condA or not condB:
if not condA:

condA_cv.wait()
if not condB:

condB_cv.wait()

(B)
with lock:

while not condA:
condA_cv.wait()

while not condB:
condB_cv.wait()

(C)
with lock:

while not condA or not condB:
condA_cv.wait()
condB_cv.wait()

(D)
with lock:

if not condA or not condB:
while not condA:

condA_cv.wait()
while not condB:

condB_cv.wait()

Your	Answer:	

[2]	b)	Which	of	the	following	are	(virtually)	shared	by	threads	within	a	single	process?	
In	other	words,	is	it	instantiated	per	process	instead	of	per	thread?		Select	all	that	apply.
(A)	Heap
(B)	Stack
(C)	Code	/	Program	Text
(D)	Registers

Your	Answer:	

[14pts]		1.	Multiple	Choice	Questions

[2]	c)	Which	of	the	following	operations	require	the	executing	code	to	be	operating	
with	high	privilege?	Select	all	that	apply.
(A)	Implementing	a	monitor
(B)	Performing	a	semaphore	P	operation	
(C)	Accessing	the	device	registers	of	an	I/O	device,	e.g.	the	disk,	keyboard,	or	network	card
(D)	Disabling	interrupts
(E)	Making	a	system	call

Your	Answer:	

3

[2]	g)	Which	of	the	following	statements	about	threads	is	false?
Select	all	that	apply.
(A)	Multi-threading	is	only	useful	on	a	multi-processor.
(B)	Multi-threading	is	only	useful	when	a	task	can	be	parallelized.
(C)	There	are	performance	benefits	to	running	threads	of	the	same	process	one	after	the	

other	on	the	same	processor.
(D)	Multi-threading	requires	operating	system	support	for	managing	multiple	PCBs.

Your	Answer:	

[2]	f)	Which	of	the	following	statements	about	deadlocking	is	true?	
Select	all	that	apply.
(A)	If	a	system	is	not	deadlocked	at	time	T,	it	can	avoid	being	deadlocked	at	time	T+1.
(B)	If	a	system	is	in	a	safe	state	at	time	T,	it	can	avoid	being	deadlocked	at	time	T+1.
(C)	When	reducing	a	Resource	Allocation	Graph,	you	should	begin	with	the	process	

which	currently	holds	the	most	resources.
(D)	Modern	operating	systems	use	the	Banker’s	Algorithm	to	determine	whether	it	is	

safe	to	give	a	particular	process	a	particular	resource.

Your	Answer:	

[2]	e)	You	are	using	a	semaphore	package	which	provides	3	functions:	init(),	P(),	and	V().	
Which	of	the	following	changes	to	the	package	could	affect	the	correctness	of	your	code?
Select	all	that	apply.
(A)	P is	modified	so	that	it	busy-waits	instead	of	yielding	when	a	resource	isn’t	available.
(B)	init is	modified	so	that	it	only	accepts	0	or	1	as	an	initial	value.
(C)	The	implementation	stores	the	count	in	an	unsigned	int instead	of	a	signed	int.
(D)	V is	modified	so	that	it	wakes	the	thread	that	most	recently	called	P.
(E)	Asserts	are	removed	from	all	three	functions.

Your	Answer:	

[2]	d)	Which	of	the	following	statements	about	systems	calls	are	true?
Select	all	that	apply.
(A)	A	system	call	can	be	caused	by	events	external	to	the	CPU.
(B)	All	registers	must	be	saved	when	performing	a	system	call.
(C)	The	old	privilege	mode	must	be	saved	when	performing	a	system	call.
(D)	The	privilege	mode	must	be	changed	to	“kernel	mode”	when	performing	a	system	call.
(E)	The	system	call	handler	can	run	on	the	stack	of	the	user	process	that	issued	the	call.

Your	Answer:	

NETID:________

[15pts]		2.	Multicore	Synchronization	using	Compare-and-Swap

For	this	question	you	may	assume	reading	and	writing	individual	memory	locations	of	size	‘int’	are	atomic	and	that	
sizeof(int)	==	sizeof(int *),	i.e.,	pointers	and	integers	have	the	same	size.	Also,	the	“C”-like	language	below	is	really	
pseudo-code.		Don’t	worry	about	casting	pointers	to	integers	or	vice	versa.		A	memory	location	is	a	memory	location!
Also,	in	the	solutions	you	are	allowed	to	busy-wait.

a) [3]	Implement	a	Test-And-Set	function	using	CAS	that	does	(not	counting	fetching	instructions)	a	single	memory	bus	
read	and	at	most	a	single	bus	write	cycle:

bool TAS(int *addr) {

}

b)	[3]		Using	CAS,	implement	an	atomic	increment	operation:	INC(&x)	increments	x by	1.		In	the	absence	of	contention	
(i.e.,	no	multiple	threads	trying	to	increment	*addr at	the	same	time),	your	code	should,	at	most,	read	memory	twice	and	
write	memory	once	(i.e.,	at	most	three	memory	bus	accesses).		You	can	assume	that	local	function	variables	are	kept	in	
CPU	registers.

bool INC(int *addr) {

}

4

Many	CPU	architectures	provide	a	Compare-And-Swap	
(CAS)	instruction	with	the	following	semantics	(here	
addr is	the	address	of	some	memory	location).		Note	
that	(not	counting	the	fetch	of	the	instruction	itself,	
which	is	hopefully	from	the	cache)	CAS	involves	a	single	
read	and	at	most	a	single	write	cycle	on	the	memory	bus	
(reading	and	writing	*addr):

ATOMIC bool CAS(int *addr, int oldval, int newval) {
if (*addr != oldval)

return FALSE;
*addr = newval;
return TRUE;

}

c)	[3]	Use	CAS	to	complete	the	implementation	of	an	append-only	lock-free	list	(i.e.,	you	are	not	to	declare	a	separate	
variable	for	a	spinlock).		The	list	is	maintained	in	reverse	order.

struct item {
struct item *prev; // points to previous item added to the list (null for first item)
int value; // contains the value in this entry

};
struct item *list = NULL; // points to last item added to the list (null if list is empty)

void add(int val) { // add value to the list
struct item *node = malloc(sizeof(struct item));
node->value = val;
node->prev = list; //replace	these	2	lines
list = node; //with	thread-safe	code	below:

}

d)	[3]	The	following	code	checks	if	val is	in	the	list.		Is	it	thread-safe?		If	so,	explain	what	is	meant	by	thread-safety.		If	not,	
explain	why	not.	(add()	is	the	only	update	operation.)

bool check(int val){
struct item *node = list;
while (node != NULL) {

if (node->value == val)
return TRUE;

node = node->prev;
}
return FALSE;

}

e)	[3]	Describe	advantages	of	CAS	over	TAS.		Consider,	for	example,	how	hard	it	would	be	to	implement	a	lock-free	
counter	or	list	data	structure	using	either	CAS	or	TAS:

5

NETID:________

[20pts]		3.	A	LUF-ly Scheduling	Algorithm

A	creative	Cornell	student	with	a	strong	sense	of	Ithaca-style	fairness	came	up	with	a	new	scheduling	policy:	Least	Used	
First	(LUF).		When	given	the	choice	to	schedule	two	processes	(jobs)	on	the	run	queue,	the	scheduler	will	select	the	one	
that	has	used	the	fewest	CPU	cycles	thus	far.		In	case	of	a	tie,	the	queue	is	otherwise	FIFO.		When	a	process	is	de-
scheduled	it	goes	to	the	end	of	the	queue.

Recall	that	a	job	has	an	arrival	time	and	a	duration	(the	amount	of	CPU	time	it	will	need,	in	time	units).		The	turnaround	
time	is	the	time	between	arrival	and	the	time	the	job	finishes.		The	response	time	is	the	time	between	arrival	and	the	
time	the	job	is	first	scheduled.		The	waiting	time	is	the	total	amount	of	time	the	job	spent	on	the	run	queue	waiting	to	be	
scheduled	(i.e.,	for	CPU-bound	jobs	it	is	turnaround	time	– duration	time).		Assume	all	jobs	are	purely	CPU-bound.

[8]	a)	Supposing	a	running	job	is	only	pre-empted	when	a	new	job	arrives	(no	interrupts),	fill	the	following	table:

Job Arrival	Time Duration Turnaround	Time Response	Time Waiting	Time

A 0 25

B 15 25

C 25 5

D 40 5

[8]	b)	Suppose	the	clock	interrupts	the	CPU	every	2	time	units	(i.e.,	at	times	0,	2,	4,	etc.)	and	jobs	arrivals	do	not	preempt	
the	current	job.		If	a	job	arrives	at	the	same	time	as	a	clock	interrupt,	the	job	can	run	immediately.		Fill	in	the	following:

Job Arrival	Time Duration Turnaround	Time Response	Time Waiting	Time

A 0 25

B 15 25

C 25 5

D 40 5

[4]	c)		Can	the	LUF	policy	cause	starvation?		Explain	your	answer.

6

[14pts]		4.	What	does	it	do???

[7]	a)	Look	at	the	C	program	below.		Write	its	output	in	the	box	to	the	right.		FYI:	waitpid(pid,	&status,	0)	waits	for	
process	pid to	finish.		System	calls	are	underlined---you	can	assume	there	won’t	be	errors.		#include’s have	been	left	out.
__

char array[] = "qwertyuiopasdfghjklzxcvbnm”;
int len = sizeof(array); // 26 initially

void mystery(){
char first = array[0];
int status, i;
int j = 0;
int pid = fork();
if (pid == 0) {

for (i = 1; i < len; i++)
if (array[i] < first)

array[j++] = array[i];
} else {

waitpid(pid, &status, 0); // wait for pid
write(1, &first, 1); // prints first
for (i = 1; i < len; i++)

if (array[i] > first)
array[j++] = array[i];

}
len = j;
if (len > 0)

mystery();
}

int main(){
mystery();
return 0;

}

[7] b) Describe briefly how fork() works. Mention PCBs, code, data, and stack segments, CPU registers, fork’s
return value, and the run queue. Use active voice (“program is run” = passive, “user runs a program” = active).

7

NETID:________

[20pts]		5.	Pooling	Resources

You	are	to	simulate	a	pool	hall	with	N pool	tables	numbered	0	to	N - 1.		Players	(threads)	that	arrive	at	the	pool	hall	are	
looking	for	tables	that	have	one	(preferred)	or	no	players	at	them.		Once	there	are	two	players	at	a	table,	they	play	a	
game	of	pool	and	then	they	leave	(separately).		When	both players	have	left	the	pool	table,	the	table	becomes	available	
for	new	players.		Fill	in	the	missing	code	below	using	Python-ish pseudo-code.		Make	sure	to	distinguish	class	variables	
from	local	function	variables,	and	don’t	add	global	ones.		Use	Mesa	locks	and	condition	variables.		No	busy	waiting!

N	=	8			#	number	of	pool	tables
class	PoolHall:
def __init__(self): add	additional	class	variables	below	if	you	need	them
self.lock =	Lock() #	monitor	lock
self.nAtTable =	[0	for	tno in	range(N)] #	number	of	players	at	each	table	(at	most	2	players)

def player_enters(self): #	wait	until	there’s	a	table,	and	then	wait	for	there	to	be	two	players	at	the	table.		Return	
#	the	table	number	(index	into	self.nAtTable)

with	self.lock: insert	your	code	below

8

class	PoolHall continued:

def player_exits(self,	tno):		#	Release	table	tno.		Once	both	players	have	left,	the	table	is	available	again.		The	players
#	don’t	have	to	wait	for	one	another	to	leave

with	self.lock: insert	your	code	below

#	Here’s	a	handy	function	you	may	like	to	use.		Returns	a	table	number	tno if	that	table	is	available.		Prefers
#	tables	with	one	player	waiting	over	empty	tables.		Returns	-1	if	all	tables	are	taken.
def table_avail(self):
for	tno in	range(N): if	self.nAtTable[tno]	==	1:	return	tno
for	tno in	range(N):	if	self.nAtTable[tno]	==	0:	return	tno
return	-1

class	Player(Thread):
def __init__(self,	poolhall,	pid):
Thread.__init__(self)
self.poolhall =	poolhall
self.pid =	pid

poolhall =	PoolHall()
for	pid in	range(NPLAYERS):
Player(poolhall,	pid).start() #	pid =	player	identifier

if	you	like	you	can	leave	some	explanation	of	your	code	below

def run(self):
while	True:
tno =	poolhall.player_enters()
print	"Player	",	self.pid,	"	got	table	",	tno
#	PLAY	SOME	POOL
poolhall.player_exits(tno)

9

NETID:________

[15pts]		6.	Variations	on	Dining	Philosophers

Recall	the	five	Dining	Philosophers	(and	five	chopsticks)	sitting	around	a	circular	table:		if	they	all	pick	up	their	right	
chopstick	before	their	left,	they	can	end	up	in	a	deadlocked	situation.

a) [4]	In	the	box	to	the	right,	draw	a	Resource	Allocation	
Graph	showing	the	Philosophers	and	chopsticks	and	a	
deadlocked	situation.

b) [3]	Assume	L	philosophers	are	left-handed	and	pick	up	their	
left	chopstick	first,	while	the	remaining	R	philosophers	are	
right-handed	and	pick	up	their	right	chopstick	first.		Fill	out	
the	following	table,	indicating	yes,	no,	or	depends (describe	
scenario	briefly	in	the	last	case).

L R Deadlock	Possible?

5 0

4 1

3 2

c)	[3]	The	five	philosophers	instead	decide	to	place	N	chopsticks	in	a	heap	in	the	middle	of	the	table.		Philosophers	can	
now	pick	up	one	chopstick	at	a	time,	but	still	need	two	to	eat.		Say	if	deadlock	is	possible	(YES,	NO,	DEPENDS)	in	each	of	
the	following	cases:

N Deadlock	Possible?

<5

5

>5

d)	[5]	In	a	recent	NASA	discovery,	planet	Mars	has	three-handed	philosophers.		Consider	a	table	with	five	three-handed	
philosophers	and	a	pile	of	N	chopsticks	in	the	middle	of	the	table.		Each	philosopher	needs	3	chopsticks	to	eat.		What	is	
the	smallest	N	such	that	deadlock	is	impossible?

10

SCRATCH	PAPER		(WILL	NOT	BE	CONSIDERED	FOR	GRADING)

11

SCRATCH	PAPER		(WILL	NOT	BE	CONSIDERED	FOR	GRADING)

12

SCRATCH	PAPER		(WILL	NOT	BE	CONSIDERED	FOR	GRADING)

13

SCRATCH	PAPER		(WILL	NOT	BE	CONSIDERED	FOR	GRADING)

14

