
CS 4410 Operating Systems Final, Fall 2015
Profs. Bracy and Van Renesse

NAME: NetID:

• This is a closed book examination.  You have 120 minutes.  No electronic devices 
of any kind are allowed.

• You must fill in your name and NETID above and at the top of each (odd-numbered) page.  
If you fail to do so, we will take off 1 point for each omission.

• Show your incomplete work for partial credit. Make any other assumptions as necessary 
and document them. Brevity is key.

• Please write your solutions within the provided boxes as much as possible.  Write clearly. 
Use the scratch paper at the end if you need to practice your answer first.

Question Points 
Possible 

0: Omitting Name or NetID −2

1: Multiple Choice 15

2: When you come to a fork() 10

3: Bounded Buffer 15

4: Priority-Based Scheduling 15

5: Network routing 20

6: Knab Bank (concurrency) 10

7: All’s Well That Ends Well 15

TOTAL 100
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[3]	a)	Replacement	Policies.	Which	of	the	following	statements	about	cache
replacement policies	is	true?	

(A) LRU	replacement	policy	will	always	outperform	a	FIFO	replacement	policy.
(B) LRU	is	rarely	implemented	in	practice	because	the	overhead	is	too	great.	
(C)	The	OPT	replacement	policy	is	rarely	implemented	in	practice	because	the	hardware	cost	is	too	great.
(D)	The	OPT	replacement	policy	is	rarely	implemented	in	practice	because	Belady’s Anomaly	is	too	likely.		
(E)	The	MRU	(Most	Recently	Used)	replacement	policy	is	effective	across	a	variety	of	application	types.

Your Answer: 

[15 pts]  1. Multiple Choice Questions

For all Multiple Choice questions, there is only ONE best answer.

[3]	b)	Security.	Which	approach	to	security	can	be	summarized	with	the	phrase	
“Don’t	contaminate	the	information!”

(A) Access	Control	Lists	(“Who	can	do	what	with	each	file.”)
(B) Linux	Access	Rights	(“What	can	each	class	of	user	do	with	each	file.”)
(C) Capabilities	(“What	you	can	do	depends	on	what	you	have.”)
(D) Bell-La	Padula Model	(“No	read	up,	no	write	down”)
(E) Biba Model	(“No	write	up,	no	read	down”)

Your Answer: 

[3]	d)	Reliable	Transport.	Which	of	the	following	is	NOT	TRUE	about	TCP?
(A) TCP	is	the	predominant	transport	protocol	for	web	traffic.
(B) A	TCP	connection	is	made	with	a	3-way	handshake.
(C) A	timeout	that	is	too	long	will	lead	to	unnecessary	transmissions.
(D) If	a	packet	goes	missing,	the	sender	could	detect	this	via	an	

acknowledgement	of	a	packet	with	a	sequence	number	higher	than	the	one	that	went	missing.
(E)	When	both	sides	of	a	TCP	connection	are	sending	data,	it	is	okay	for	them	to	use	overlapping	
sequence	numbers.

Your Answer: 

[3]	c)	System	Calls. When	making	a	system	call,	why	doesn’t	the	processor	create	a
stack	frame	for	the	system	call	on	the	user	stack?

(A) Actually,	the	processor	does	create	the	system	call’s	stack	frame	on	the	user	stack.
(B) Because	the	kernel	stack	frame	lives	in	a	different	virtual	memory	address	space.	
(C) Because	the	kernel	stack	frame	needs	to	be	accessible	even	after	the	system	call	is	complete.
(D) Because	the	kernel	should	not	be	allowed	to	access	data	which	the	user	placed	on	its	stack	frame.
(E) Because	the	user	process	should	not	be	allowed	to	access	data	that	the	kernel	could	have	temporarily	

placed	on	the	user	stack	if	the	system	call	stack	frame	were	there.

Your Answer: 

[3]	e)	Page	Faults.	Which	of	the	following	causes	of	a	Page	Fault	WILL	NEVER	result	in	
disk	read	access?	

(A) Actually,	all	page	faults	result	in	a	disk	read	access.
(B) Accessing	an	address	in	the	stack	segment	from	a	frame	that	has	never	been	accessed	before.
(C) Accessing	an	address	in	the	code	segment	that	has	never	been	accessed	before.
(D) Accessing	an	address	that	has	been	read	earlier	by	the	same	process.
(E) Accessing	a	global	variable.

Your Answer: 
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[10pts]		2.	When	you	come	to	a	fork(),	take	it!

Consider	the	C	program	below:

main() {
if (fork() == 0) { 

if (fork() == 0) {
printf("3");

}
else {

pid_t pid; 
int status;
if ((pid = wait(&status)) > 0) {

printf("4");
}

} 
}
else {

if (fork() == 0) {
printf("1");
exit(0); 

}
printf("2");

}
printf("0");
return 0; 

}

Out	of	the	5	outputs	listed	below,	which	are	valid	
outputs	of	this	program?	
Assume	that	all	processes	run	to	normal	completion.	

A. 2030401 
B. 1234000
C. 2300140
D. 2034012
E. 3200410

Your	Answer:

Recall	the	following:

Function	fork returns	0 to	the	child	process	and	the	child’s	process	identifier	to	the	parent.
Function	wait returns	-1 if	there	is	an	error,	e.g.,	when	the	executing	process	has	no	child.	

For	this	question	we	are	assuming	that	neither	fork nor	wait fail.

NETID:________



[15pts]		3.	Bounded	Buffer

You	are	to	solve	the	classic	Producer/Consumer	problem	with	a	bounded	buffer.		The	bounded	buffer	essentially	
implements	a	blocking	queue.		There	is	a	shared	class	BoundedBuffer with	a	buffer	of	size	N,	a	“head”	index	where	new	
entries	are	inserted,	and	a	“tail”	index	where	new	entries	are	removed.		Initially,	head	and	tail	are	0.		You	are	to	write	two	
methods:
• produce(item) adds	a	new	item	to	the	bounded	buffer,	and	should	block	if	the	buffer	is	full.
• consume() removes	and	returns	an	item,	and	should	block	if	the	buffer	is	empty.
Use	locks	(mutexes)	and	Mesa-style	condition	variables.		No	busy	waiting:	when	a	thread	cannot	continue,	it	should	block.

We	have	provided	some	skeleton	code	in	pseudo-Python	(your	use	of	“self.”	to	access	class	fields	is	optional).		Add	more	
variables	and	code	as	needed:		Not	all	boxes	need	be	filled	necessarily	(but	at	least	some	do).

N	=	8			#	number	of	slots	in	the	bounded	buffer
class BoundedBuffer:
def __init__(self):

self.buffer =	[None]	*	N #	buffer	of	size	N,	initially	empty
self.head =	0 #	where	new	entries	go	in
self.tail =	0 #	where	entries	are	read

#	add	additional	instance	variables	below	if	you	need	them

def produce(self,	item): #	add	a	new	item	to	the	bounded	buffer.		Block	while	full.

self.buf[self.head]	=	item
self.head =	(self.head +	1)	%	N
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class	BoundedBuffer continued:

def consume(self):		#	Remove	and	return	an	item	from	the	bounded	buffer.		Block	if	empty.

item	=	self.buf[self.tail]
self.tail =	(self.tail +	1)	%	N

return	item

5

NETID:________

The Twelve Commandments of Synchronization

Commandment	0.	Thou	shalt	live	and	die	by	coding	conventions	for	synchronization.	
Commandment	1.	Thou	shalt	name	your	synchronization	variables	properly.	
Commandment	2.	Thou	shalt	not	violate	the	abstraction	boundaries	provided	by	synchronization	primitives,	nor	
shalt	thou	try	to	change	the	semantics	of	well-established	synchronization	primitives,	and	thou	shall	look	with	
disdain	upon	he	who	does.	
Commandment	3.	Thou	shalt	use	monitors	and	condition	variables	instead	of	semaphores	whenever	possible.	
Commandment	4.	Thou	shalt	not	mix	semaphores	and	condition	variables.	
Commandment	5.	Thou	shalt	not	busy-wait.	
Commandment	6.	All	shared	state	must	be	protected.	
Commandment	7.	Thou	shalt	grab	the	monitor	lock	upon	entry	to,	and	release	it	upon	exit	from,	a	procedure.	
Commandment	8.	Honor	thy	shared	data	with	an	invariant,	which	your	code	may	assume	holds	when	a	lock	is	
successfully	acquired	and	your	code	must	make	true	before	the	lock	is	released.	
Commandment	9.	Thou	shalt	cover	thy	naked	waits.
Commandment	10.	Thou	shalt	guard	your	wait	predicates	in	a	while	loop.	Thou	shalt	never	guard	a	wait	
statement	with	an	if	statement.	
Commandment	11.	Thou	shalt	not	split	predicates.	
Commandment	12.	Thou	shalt	help	make	the	world	a	better	place	for	the	creator’s	mighty	synchronization	vision.	

Prof.	Emin Gün Sirer



[15pts]		4.	Priority-Based	Scheduling

Given	are	a	set	of	jobs	with	a	particular	arrival	time,	a	duration	(the	amount	of	CPU	time	it	will	need,	in	time	units),	and	a	
priority.		Given	a	choice	between	running	two	jobs,	the	one	with	the	higher	priority	wins.		If	they	have	the	same	priority,	
the	one	with	the	earlier	arrival	time	wins.		There	are	no	two	jobs	with	the	same	arrival	time.		All	jobs	are	purely	CPU	
bound.	A	CPU	should	never	sit	idle	if	there	are	jobs	to	run.		That	is,	the	scheduler	always	runs	when	a	job	completes.

The	turnaround	time	of	a	job	is	the	time	between	arrival	and	the	time	the	job	finishes.		The	response	time	of	a	job	is	
the	time	between	arrival	and	the	time	the	job	is	first	scheduled.	

[5	pts]	a)	Assuming	there	is	no	preemption,	fill	in	the	following	table:

Job Arrival	
Time

Duration Priority Turnaround	Time Response	Time

A 0 25 0 25 0
B 15 25 1

C 20 5 3

D 40 5 2

[5	pts]	b)	Suppose	the	arrival	of	a	job	at	time	T	causes	the	scheduler	to	run	and	select	a	job	to	run	at	time	T,	being	able	to	
preempt	the	job	that	was	running.		Fill	in	the	following	table:

6

Job Arrival	
Time

Duration Priority Turnaround	Time Response	Time

A 0 25 0

B 15 25 1

C 20 5 3

D 40 5 2

Optional:	show	your	work	by	drawing	a	Gantt	chart	or	a	time	table

Optional:	show	your	work	by	drawing	a	Gantt	chart	or	a	time	table
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[5	pts]	c)	Assume	that	the	scheduler	runs	every	five	time	units	(i.e.,	at	time	0,	5,	10,	etc.)	and	also	whenever	a	job	finishes.	
This	time	the	priority	of	a	job	is	not	pre-assigned	and	static,	but	determined	by	how	long	it	has	been	on	the	run	queue	
(aka	ready	queue)	since	the	last	time	it	ran	(or	since	it	arrived	in	case	the	job	hasn’t	run	yet).		In	case	of	a	tie,	the	job	that	
arrived	earlier	runs.		Fill	in	the	following	table:

Job Arrival	
Time

Duration Turnaround	Time Response	Time

A 0 25

B 15 25

C 20 5

D 40 5
Optional:	show	your	work	by	drawing	a	Gantt	chart	or	a	time	table

NETID:________



[20pts]		5.	Network	Routing

Depicted	is	a	tiny	part	of	the	Internet	with	three	routers	R1,	R2,	and	R3,	and	six	bi-directional	links,	L1,	L2,	L3,	L1-2,	L2-3,
L1-3.		Also	shown	are	the	routing	tables	of	each	of	the	three	routers.		Each	row	shows	an	IP	address	prefix	and	the	
corresponding	outgoing	link.		Recall	that	/16	stands	for	a	netmask 255.255.0.0	(i.e.,	the	only	the	first	16	bits	are	
significant),	and	/24	stands	for	a	netmask 255.255.255.0.		Also	recall	that	each	IP	datagram	(aka	packet)	has	a	source	
address,	a	destination	address,	and	a	TTL	(Time-To-Live,	usually	used	as	a	maximum	hop	count).		For	simplicity,	assume	
there	are	four	types	of	IP	datagram:		TCP,	UDP,	TIME_EXCEEDED,	and	UNREACHABLE.	

When	a	datagram	arrives	at	a	router,	the	router	first	checks	if	the	destination	address	matches	an	entry	in	the	
routing	table.		If	so	and	the	TTL	>	0,	then	the	router	decrements	the	TTL	and	forwards	the	datagram	to	the	outgoing	link	
in	the	entry.		If	not,	there	are	two	cases.		If	the	datagram	type	is	not	UDP	or	TCP,	then	the	router	simply	drops	the	
datagram.		Otherwise	the	router	swaps	the	source	and	destination	address	in	the	datagram	and	sets	the	TTL	to	100.		It	
sets	the	type	to	UNREACHABLE	if	there	was	no	match	in	the	routing	table,	or	to	TIME_EXCEEDED	otherwise.		It	then	
treats	the	datagram	as	if	it	had	just	arrived.
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Router	R1

Prefix Outgoing	Link

132.43/16 L1-3

84.128/16 L1

84.128.33/24 L1-2

R1 R2

R3

L1-2

L2-3L1-3

L1 L2

L3

Router	R2

Prefix Outgoing	Link

84.128/16 L1-2

132.43/16 L2-3

84.128.33/24 L2-3

132.43.44/24 L2

Router	R3

Prefix Outgoing	Link

132.43.44/24 L2-3

132.43/16 L3

83.128/16 L1-3

111.32.45/24 L2-3

Below	we	will	present	several	examples	of	IP	datagrams	arriving	at	a	particular	router.		We	will	give	you	the	router	and	IP	
datagram	header	upon	entry	at	the	router.		You	are	to	describe	the	path	it	will	take,	and	the	contents	of	the	datagram	
“exit”	header	on	the	last	link	it	travels	in	this	diagram.		In	case	a	router	drops	the	datagram,	that	would	be	the	contents	of	
the	datagram	just	before	it	got	dropped.		For	example,	if	router	R1	receives	a	UDP	datagram	for	destination	111.32.45.68,	
R1	turns	the	type	into	UNREACHABLE	and	sets	the	TTL	to	100	(because	there	is	no	entry	for	the	destination	address	in	the	
routing	table)	and	forwards	the	datagram	to	R3	over	link	L1-3		(because	the	destination	address	is	now	132.43.22.33).		
Finally,	R3	forwards	the	datagram	to	link	L3:

Router R1 Source Destination TTL TYPE

Entry: 132.43.22.33 111.32.45.68 10 UDP

Path: R1 è L1-3 è R3 èL3
Exit: 111.32.45.68 132.43.22.33 98 UNREACHABLE



Router R1 Source Destination TTL TYPE

Entry: 132.43.44.33 84.128.33.100 4 UDP

Path:

Exit:

Router R3 Source Destination TTL TYPE

Entry: 84.128.22.3 132.43.44.2 1 TCP

Path:

Exit:

Router R2 Source Destination TTL TYPE

Entry: 142.23.33.19 132.43.44.2 5 TCP

Path:

Exit:

Router R1 Source Destination TTL TYPE

Entry: 142.23.33.19 132.43.44.2 5 UDP

Path:

Exit:

9

[5	pts]

[5	pts]

[5	pts]

[5	pts]

NETID:________



[10pts]		6.	A	New	Job	at	Knab Bank

You	have	just	started	working	for	the	Knab Bank	to	maintain	their	core	code.		A	now	retired	programmer	has	written	
some	highly	concurrent	code	that	allows	many	operations	on	bank	accounts	to	go	on	concurrently.		The	programmer	took	
great	care	to	make	sure	that	it	would	never	be	possible	to	``see	inconsistent	state’’,	for	example,	halfway	through	a	
transfer	from	one	account	to	another	when	money	has	been	withdrawn	from	the	one	account	but	not	yet	deposited	into	
the	other.		All	that	seems	to	work	great.		Unfortunately,	some	operations	like	deposit	and	transfer	sometimes	seem	to	
hang	for	ever.		Your	job	is	to	find	the	bug	and	fix	it.		Below	is	an	excerpt	of	the	code:

class Account: # account	object
def __init__(self):

self.lock = Lock() # lock	on	the	account
self.balance = 0 # amount	of	money	in	the	account

class Bank:
def __init__(self): # initialize	instance	variables

self.lock = Lock() # lock	on	the	list	of	accounts
self.accounts = [] # append-only	list	of	accounts

def newAccount(self): # create	an	account	and	return	new	account	number
with self.lock:

acct_number = len(self.accounts)
self.accounts.append(Account())
return acct_number

def deposit(self, acct_number, amount): # add	money	to	account
acct = self.accounts[acct_number]
with acct.lock:

acct.balance += amount

# transfer	money	from	one	account	to	another.		Return	whether	successful	or	not
def transfer(self, acct_number_from, acct_number_to, amount):

acct_from = self.accounts[acct_number_from]
acct_to = self.accounts[acct_number_to]
with acct_from.lock:

with acct_to.lock:
if acct_from.balance < amount: # insufficient	funds

sufficient_balance = False
else: # update	both	accounts

sufficient_balance = True
acct_from.balance -= amount
acct_to.balance += amount

return sufficient_balance # return	success	status
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Briefly	describe	the	bug(s)	and	how	to	fix	it	(them)	in	the	box	below.		Use	plain	English,	not	code.
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[15pts]		7.	All’s	Well	That	Ends	Well

A	slight	variant	of	this	question	was	asked	on	Prelim	2.		Suppose	you	have	a	Terabyte	partition	on	a	disk.		To	be	precise,	
the	partition	has	240 bytes	on	it,	subdivided	into	blocks	of	8	Kbytes	(8192	=	213 bytes).

a) [1]	How	many	blocks	are	on	the	partition?
(Write	your	answer	in	the	format	2xxx.)

You	want	to	put	a	Unix-like	file	system	on	the	partition,	with	one	superblock	in	position	0,	followed	by	a	sequence	of	
blocks	filled	with	i-nodes.		Each	i-node	is	128	=	27 bytes.		You	want	to	have	enough	i-nodes	to	store	220 (about	a	million)	
files.

b)		[1]	How	many	i-node	blocks	do	you	need	to	store	all	these	i-nodes?
(Answer	in	2xxx format.)

A	block	pointer	identifies	a	block	on	the	partition,	and	is	4	bytes	long	(enough	to	identify	232 blocks).		An	“indirect	
block”	(a	block	filled	with	block	pointers)	can	have	8192	/	4	=	2048	(211)	block	pointers.

Suppose	now	that	an	i-node	contains	13	block	pointers.		The	first	10	point	to	the	first	10	data	blocks.		The	next	three	
point	to	an	indirect	block,	a	double	indirect	block,	and	a	triple	indirect	block.		The	maximum	file	size	can	be	
approximated	by	just	the	number	of	data	blocks	reachable	from	the	triple	indirect	block	pointer	(the	rest	is	negligible).

An	i-node	also	contains	a	“last	modified	time”	that	is	updated	whenever	a	file	is	written,	but	in	our	case	there	are	no	
other	timestamps	in	an	i-node.

c)		[2]	In	theory,	how	much	data	(in	bytes)	could	be	accessed	from	the	triple	
indirect	block	pointer	in	the	i-node?		For	this	question,	assume	the	size	of	the	
disk	is	unbounded. (Answer	in	2xxx format.)

Briefly	explain	(or	provide	the	work	for)	your	answer:

Briefly	explain	(or	provide	the	work	for)	your	answer:

Briefly	explain	(or	provide	the	work	for)	your	answer:

NETID:________
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Question	7.	(cont’d)

d)		[2]	Assume	now	that	the	file	system	cache	is	empty	except	for	the	superblock.		
Assume	the	file	with	i-node	#2015	has	the	string	“Hello	World”	in	it	(that	is,	the	
file	is	just	11	bytes	long).		How	many	disk	accesses	would	be	necessary	to	read	the	
contents	of	this	file,	given	that	you	(and	the	kernel)	know	the	i-node	number?	

Briefly	explain	your	answer:

e)		[3]	In	reality	this	same	file’s	i-node	number	has	to	be	retrieved	first.		
Suppose	the	name	of	the	file	is	/etc/test.txt.		Assume	that	the	contents	of	each	
directory	fits	in	a	single	block.		The	root	directory	/	is	described	in	i-node	#2	by	
convention.			Assume	/etc is	in	i-node	#5	(you	know	this,	but	the	kernel	
doesn’t).		Again,	assuming	only	the	superblock	is	in	the	cache	and	a	cache	large	
enough	so	the	same	block	never	has	to	be	read	more	than	once,	how	many	disk
accesses	are	required	to	read	the	file?	
Briefly	explain	your	answer:
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Question	7.	(cont’d)

f)		[3]	File	/etc/shakespeare.txt (which	you	know	to	be	in	i-node	#7,	but	the	kernel	
doesn’t)	contains	the	complete	works	of	Shakespeare	(222 bytes	or	about	4	
Megabytes).		Assuming	only	the	superblock	is	in	the	cache,	how	many	disk	
accesses	are	required	to	retrieve	the	whole	thing?

g)		[3]	Suppose	somebody	wants	to	add	the	text	"All's	Well	That	Ends	Well.”	to	
the	end	of	the	complete	works	of	Shakespeare	(the	new	text	will	be	contained	
in	a	new	data	block	at	the	very	end).	 Suppose	that	the	file	system	has	only	the	
superblock	in	its	cache	and	can	allocate	free	blocks	without	going	to	the	
disk.	 How	many	disk	reads	and	how	many	disk	writes	are	necessary	(assuming	
a	“write-through”	cache?		(Assume	that	among	the	i-nodes	only	i-node	#7	has	
to	be	updated	for	this	operation.)

Briefly	explain	your	answer:

a)
Briefly	explain	your	answer:

NETID:________



SCRATCH	PAPER		(WILL	NOT	BE	SCANNED	NOR	CONSIDERED	FOR	GRADING)
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SCRATCH	PAPER		(WILL	NOT	BE	SCANNED	NOR	CONSIDERED	FOR	GRADING)

15



SCRATCH	PAPER		(WILL	NOT	BE	SCANNED	NOR	CONSIDERED	FOR	GRADING)
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