
1

Log-Structured File Systems

2

Basic Problem

• Most file systems now have large memory caches

(buffers) to hold recently-accessed blocks

– Most reads are thus satisfied from the buffer cache

• From the point of view of the disk, most traffic is write

traffic

– To speed up disk I/O, we need to make writes go faster

• But disk performance is limited ultimately by disk head

movement

• With current file systems, adding a block takes several

writes (to the file and to the metadata), requiring

several disk seeks

3

LFS: Basic Idea

• An alternative is to use the disk as a log

• A log is a data structure that is written only at the head

• If the disk were managed as a log, there would be

effectively no head seeks

• The “file” is always added to sequentially

• New data and metadata (inodes, directories) are

accumulated in the buffer cache, then written all at

once in large blocks (e.g., segments of .5M or 1M)

• This would greatly increase disk thruput

• How does this really work? How do we read? What

does the disk structure look like? etc.?

4

LFS Data Structures

• Segments: log containing data blocks and metadata

• inodes: as in Unix, inodes contain physical block

pointers for files

• inode map: a table indicating where each inode is on

the disk

– inode map blocks are written as part of the segment; a table in a

fixed checkpoint region on disk points to those blocks

• segment summary: info on every block in a segment

• segment usage table: info on the amount of “live” data

in a block

5

LFS vs. UFS

file1 file2

dir1 dir2

Unix File

System

file1 file2

dir1 dir2

Log-Structured

File System

Log

inode

directory

data

inode map

Blocks written to

create two 1-block

files: dir1/file1 and

dir2/file2, in UFS and

LFS

6

LFS: read and write

• Every write causes new blocks to be added to the

current segment buffer in memory; when that segment

is full, it is written to the disk

• Reads are no different than in Unix File System, once

we find the inode for a file (in LFS, using the inode

map, which is cached in memory)

• Over time, segments in the log become fragmented as

we replace old blocks of files with new block

• Problem: in steady state, we need to have contiguous

free space in which to write

7

LFS Failure Recovery

• Checkpoint and roll-forward

• Recovery is very fast

– No fsck, no need to check the entire disk

– Recover the last checkpoint, and see how much
data written after the checkpoint you can
recover

– Some data written after a checkpoint may be
lost

– Seconds versus hours

8

Cleaning

• The major problem for a LFS is cleaning, i.e.,

producing contiguous free space on disk

• A cleaner process “cleans” old segments, i.e., takes

several non-full segments and compacts them, creating

one full segment, plus free space

• The cleaner chooses segments on disk based on:

– utilization: how much is to be gained by cleaning them

– age: how likely is the segment to change soon anyway

• Cleaner cleans “cold” segments at 75% utilization and

“hot” segments at 15% utilization (because it’s worth

waiting on “hot” segments for blocks to be rewritten by

current activity)

9

LFS Summary

• Basic idea is to handle reads through caching and

writes by appending large segments to a log

• Greatly increases disk performance on writes, file

creates, deletes, ….

• Reads that are not handled by buffer cache are same

performance as normal file system

• Requires cleaning demon to produce clean space, which

takes additional CPU time

