
Thread

Implement a user-level cooperative thread library, using the POSIX context
functions. The necessary functions are specified in this header:

thread.h
1 struct thread;

2 struct thread *thread_create(void (*f)(void));

3 void thread_yield(void);

4 void thread_wait(struct thread *t);

5 void thread_destroy(struct thread *t);

7 struct semaphore;

8 struct semaphore *semaphore_create(unsigned int value);

9 void semaphore_post(struct semaphore *s);

10 void semaphore_wait(struct semaphore *s);

11 void semaphore_destroy(struct semaphore *s);

Define the contents of the struct thread and struct semaphore datatypes,
as well as the bodies of the eight required functions, in thread.c. An imple-
mentation of the Producer–Consumer problem, using the thread library you will
implement, will be provided in main.c and queue.c; build the whole thing into
a program called queue with this Makefile:

Makefile
1 CFLAGS=-Wall -g

3 OBJECTS=\

4 queue.o \

5 main.o \

6 thread.o

8 HEADERS=\

9 queue.h \

10 thread.h

12 queue: $(OBJECTS)

13 queue.o: queue.c $(HEADERS)

14 main.o: main.c $(HEADERS)

15 thread.o: thread.c $(HEADERS)

17 .PHONY: clean

18 clean:

19 rm -f queue $(OBJECTS)

There have been some changes to the queue program compared to the pre-
vious project; specifically, instead of sleeping, the threads call thread yield
on each outer iteration, and instead of stopping after a particular amount of
time, they stop after a particular number of items have been processed through

1



(thus avoiding the problem of hanging at the end of the program if the speeds
do not match). The options that specify the various parameters are shown in
the usage information:

$ ./queue -?

Usage: ./queue [OPTIONS]

Options:

-q SIZE Queue at most SIZE items

-p NUM Produce NUM items at a time

-c NUM Consume NUM items at a time

-n NUM Stop after NUM items

Details

Threads are launched with thread create, which expects a pointer to a function
with no arguments or return value, and runs that function in its own thread.
Schedule threads in a round-robin fashion (first-come first-served), and whenever
new threads are added to the queue (by thread create or on waking up from
semaphore wait or thread wait), add them to the tail of the queue (to execute
last). Move on to schedule the next thread in the queue on thread yield, and
whenever necessary on semaphore wait or thread wait. On thread yield,
just move the current thread to the tail of the queue; on semaphore wait on a
zero semaphore or thread wait on an active thread, move it to a waiting queue
associated with that semaphore or thread.

When the function associated with a thread returns, wake up (reschedule at
the tail of the queue) all of the other threads waiting for it (with thread wait).
One of them (but not more than one) must call thread destroy to clean up
the thread. Note that every thread must be waited for and then destroyed, and
it is perfectly valid to wait on a thread either while it is still running or after
it has already finished (although in the latter case, there is no need to actually
wait). Look at the provided main function and bounded queue implementation
to see how the thread and semaphore functions you implement should be used.

Because there is no ambiguity about scheduling order or when the running
thread changes, execution should always be deterministic—here are some exam-
ples of the output you should get with various parameters:

$ ./queue

Creating producer thread.

Creating consumer thread.

Waiting for producer thread.

Producing.

Produced 0.

Consuming.

Consumed 0.

Produced 1.

2



Consumed 1.

Produced 2.

Consumed 2.

Produced 3.

Consumed 3.

Produced 4.

Consumed 4.

Produced 5.

Consumed 5.

Produced 6.

Consumed 6.

Produced 7.

Consumed 7.

Produced 8.

Consumed 8.

Produced 9.

Consumed 9.

Done producing.

Done consuming.

Waiting for consumer thread.

Done.

$ ./queue -q 3 -p 2

Creating producer thread.

Creating consumer thread.

Waiting for producer thread.

Producing.

Produced 0.

Produced 1.

Consuming.

Consumed 0.

Produced 2.

Produced 3.

Consumed 1.

Produced 4.

Consumed 2.

Produced 5.

Consumed 3.

Produced 6.

Consumed 4.

Produced 7.

Consumed 5.

Produced 8.

Consumed 6.

Produced 9.

Consumed 7.

Done producing.

Consumed 8.

Waiting for consumer thread.

3



Consumed 9.

Done consuming.

Done.

Resources

Each thread will need a way to save its registers and stack when it is not
running. POSIX specifies getcontext, setcontext, makecontext, and swapcontext
for managing such contexts. In addition to the linked specifications, the Linux
manual pages (e.g. man swapcontext) provide somewhat helpful examples.

When you have finished, submit your thread.c on CMS.

4

http://opengroup.org/onlinepubs/007908775/xsh/getcontext.html
http://opengroup.org/onlinepubs/007908775/xsh/makecontext.html
http://cms.csuglab.cornell.edu

