
Bounded Queue

The Producer–Consumer Problem requires the synchronization of two concur-
rent threads, one that produces new items, and one that consumes them. The
producer and the consumer share a fixed-size buffer (bounded queue) for the
items.

Implement a bounded queue datatype and operations, as specified in this
header:

queue.h
1 struct queue;

2 struct queue *queue_init(unsigned int size);

3 void queue_put(struct queue *q, int value);

4 int queue_get(struct queue *q);

5 void queue_destroy(struct queue *q);

Define the contents of the struct queue datatype, as well as the bodies
of the four required functions, into queue.c. A main.c, which implements
the producer and consumer threads that exercise the bounded queue, will be
provided; build the whole thing into a program called queue with this Makefile:

Makefile
1 CFLAGS=-Wall -g -pthread

2 LDFLAGS=-pthread

4 OBJECTS=\

5 queue.o \

6 main.o

8 queue: $(OBJECTS)

9 queue.o: queue.c queue.h

10 main.o: main.c queue.h

12 .PHONY: clean

13 clean:

14 rm -f queue $(OBJECTS)

The queue program spawns two threads, a producer and a consumer, which
wake up every second to do their jobs. A few options can manipulate their
behavior, as shown in the usage information:

$ ./queue -?

Usage: solution/queue [OPTIONS]

Options:

-n SIZE Let the queue hold SIZE items at once

-p NUM Produce NUM items each second

-c NUM Consume NUM items each second

-d SECONDS Stop after SECONDS duration

1

http://en.wikipedia.org/wiki/Producer-consumer_problem


Regarding the actual bounded queue implementation, the manner in which
the int values are actually stored is not important for this assignment; a circular
buffer might be easiest, since that data structure lends itself to a fixed-size queue.
The synchronization itself can be gleaned from the description of the Producer–
Consumer Problem above, with the semaphores implemented using the POSIX
semaphore interface (where sem wait corresponds to the down operation in the
pseudocode description, and sem post corresponds to up).

For good karma, you may—optionally—attack the multiple-producers, multiple-
consumers problem, in which there may be more than one of each kind of thread.
A pseudocode solution for that may be found in the same place.

When finished, submit queue.c on CMS.

2

http://en.wikipedia.org/wiki/Circular_buffer
http://en.wikipedia.org/wiki/Circular_buffer
http://linux.die.net/man/7/sem_overview
http://linux.die.net/man/7/sem_overview
http://cms.csuglab.cornell.edu

