10

12

13

14

Bounded Queue

The Producer—Consumer Problem requires the synchronization of two concur-
rent threads, one that produces new items, and one that consumes them. The
producer and the consumer share a fixed-size buffer (bounded queue) for the
items.

Implement a bounded queue datatype and operations, as specified in this
header:

queue.h

struct queue;

struct queue *queue_init(unsigned int size);
void queue_put(struct queue *q, int value);
int queue_get(struct queue *q);

void queue_destroy(struct queue *q);

Define the contents of the struct queue datatype, as well as the bodies
of the four required functions, into queue.c. A main.c, which implements
the producer and consumer threads that exercise the bounded queue, will be
provided; build the whole thing into a program called queue with this Makefile:

Makefile

CFLAGS=-Wall -g -pthread
LDFLAGS=-pthread

OBJECTS=\
queue.o \
main.o

queue: $(0BJECTS)
queue.o: queue.c queue.h
main.o: main.c queue.h

.PHONY: clean
clean:
rm -f queue $(0OBJECTS)

The queue program spawns two threads, a producer and a consumer, which
wake up every second to do their jobs. A few options can manipulate their
behavior, as shown in the usage information:

$./queue -?
Usage: solution/queue [OPTIONS]

Options:
-n SIZE Let the queue hold SIZE items at once
-p NUM Produce NUM items each second
-c NUM Consume NUM items each second

-d SECONDS Stop after SECONDS duration

http://en.wikipedia.org/wiki/Producer-consumer_problem

Regarding the actual bounded queue implementation, the manner in which
the int values are actually stored is not important for this assignment; a |circular
buffer might be easiest, since that data structure lends itself to a fixed-size queue.
The synchronization itself can be gleaned from the description of the Producer—
Consumer Problem above, with the semaphores implemented using the [POSIX
semaphore interface (where sem_wait corresponds to the down operation in the
pseudocode description, and sem_post corresponds to up).

For good karma, you may—optionally—attack the multiple-producers, multiple-
consumers problem, in which there may be more than one of each kind of thread.
A pseudocode solution for that may be found in the same place.

When finished, submit queue.c on |CMS|

http://en.wikipedia.org/wiki/Circular_buffer
http://en.wikipedia.org/wiki/Circular_buffer
http://linux.die.net/man/7/sem_overview
http://linux.die.net/man/7/sem_overview
http://cms.csuglab.cornell.edu

