
 1

Practicum in Database Systems  
 

Project 4 intro

 2

Project 4 overview

• Bring together your work for P2 and P3
• Support query optimization:

• gather data statistics
• choose implementation of selection
• choose join order
• choose implementation of each join

• Contains algorithms/data structures you may
not have seen or not seen in this exact format

 3

Architecture/format changes

• Physical Plan Builder config file goes away
• Interpreter config file contains just input/

output/temp sort directory
• You need to generate and print logical and

physical plans as well as query answers
• See instructions for expected format of your

logical/physical plan

 4

Step 1: gather statistics

• Write code to collect basic stats on your
relations:
• number of tuples
• for each attribute, min and max values

• Your interpreter should do this before running
queries

• Should write stats out in a file that can be
accessed by DB catalog

 5

Step 2: push selections

• We already did some of this in P2

• But this time, we will push more aggressively

 6

Example

SELECT * FROM R, S WHERE R.A = 100 AND R.A = S.B

• Your plan probably looks like this:

 7

A better plan

 8

First things first

• When to push selections?
• While building logical plan

• Always advantageous in our implementation
• Regardless of data stats

 9

What does your logical plan look like?

• Single relation case – same as before
• Multi-relation case – don't fix the join order

• This will be done in the physical plan builder
based on data stats

• So you only have one join operator, with multiple
children

• Children are selections or base tables

 10

How to push selections

• Want to "propagate" numerical constraints
through equalities between attributes

• Details and scope of what you should do are
specified in the instructions

 11

The union-find data structure

• Should propagate constraints using a union-
find data structure
• Also sometimes called disjoint-set

• A union-find has a collection of elements
• Every element is a set of attributes which are

constrained to be equal to each other
• May also contain numerical bounds

 12

Step 3: choose implementation for each
selection

• In your Physical Plan Builder, when you visit()
a logical selection op

• Use data statistics and available index info
• Calculate cost for every possible way to

evaluate
• Choose lowest-cost alternative
• Formulas should be familiar from 4320

 13

Step 4: choose a join order

• Left-deep tree, but need to chose ordering
• Similar to algorithm you saw in 4320 but

simpler (?)
• See instructions of textbook by Garcia-Molina,

Ullman and Widom for more details in
instructions)

 14

Dynamic programming algorithm

• Iterate over all subsets of relations, in
increasing order of size
• All subsets of size 2, all subsets of size 3, etc

• For each subset, find and retain only the
lowest-cost join order

• This terminates with the lowest-cost join order
for the entire set

 15

Finding the lowest cost plan

• If a subset has 2 relations, best (lowest cost)
plan is the one with smaller relation as outer

• Whether you use BNLJ or SMJ, outer size
influences overall cost

 16

Cost for subsets of size >= 3

• Cost of join order = sum of sizes of all
intermediate relations, excluding final result

• Rationale: every intermediate relation we
count is outer for some join

 17

Calculating cost of a plan

 18

Cost of plan

• Cost = size of last intermediate relation + cost
of subplan to generate that relation

• (For a plan with 2 relations assume cost = 0)

 19

How to compute relation sizes?

• Ok, so how do we compute intermediate
relation sizes?

• Let's start with the join of 2 relations, R and S
• Size could theoretically vary from 0 to the

cross product size
• We estimate it using statistics

 20

V-values

• Given a relation R and attribute A, V(R, A) =
number of distinct values A takes in R

• You can compute this for each relation and
each attribute from your statistics

• Assume uniform distribution
• If you have a selection, include the reduction

factor in your calculations

 21

Join size

• Joining R and S on R.A = S.A
• Make some assumptions about R.A and S.A:
if V(R,A) ≤ V(S,A) then every value of R.A appears as a
value of S.A
if V(R,A) ≥ V(S,A) then every value of S.A appears as a
value of R.A
• Intuition from primary key/foreign key joins

 22

Computing join size

• Suppose V(R.A) <= V(S.A)
• Every tuple in R has a chance 1/V(S,A) of

joining with a tuple from S
• So joins with |S|/V(S,A) tuples
• So expected join size is |R||S|/V(S,A)
• If V(R.A) >= V(S.A) analogous argument

shows join has size |R||S|/V(R,A)

 23

Conclusion

• If joining R and S on R.A = S.A, join size is

• See instructions for discussion of more
complex join conditions

 24

Putting it all together

• You need to iterate over all subsets of relations
• Note: relations really means "relation instances" (may

have FROM Reserves R1, Reserves R2 -> 2 instances)
• For every subset, compute:

• best join order
• cost of this plan
• size of resulting relation
• V-values for resulting relation

• The best join order for the (unique) largest
subset is your answer

 25

Step 5: choose an implementation for each
join

• Make some choice between BNLJ and SMJ
• Don't use a "trivial" policy that always uses

BNLJ (or always uses SMJ)
• Unless of course you have not been able to

implement one of these joins in P3
• Find and state some criterion for choosing

between the two

 26

Must-have requirements

• Pretty much need to implement everything
the way we described it

• If you want to diverge from the instructions,
need to get permission (Piazza, office hours,
email)

• Will need to explain why your version is
better than our suggested approach/
algorithm

 27

How we will grade

• Your stats file must match ours
• Your logical plans must match ours
• Your physical plans must be "reasonable"

given the data and any special features of
your implementation (that you mention in
your README)

• Your query answers must still be correct

