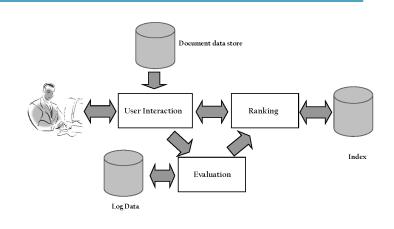
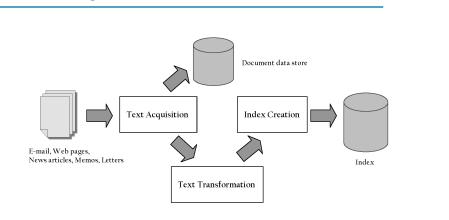
Information Retrieval

INFO 4300 / CS 4300


Last class

- Precision/recall exercise
- Search engine architecture
 - » The indexing process
 - » The querying process


Today

- Web crawlers
 - » Retrieving web pages
 - » Crawling the web

Query Process

Indexing Process

Index Creation

- Document Statistics
 - Gathers counts and positions of words and other features
 - Ranking algorithm uses to compute doc scores
- Weighting
 - Computes weights for index terms
 - Used in ranking algorithm
 - -e.g., *tf.idf* weight
 - » Combination of *term frequency* in document and *inverse document frequency* in the collection

Index Creation

Inversion

- Core of indexing process
- Converts document-term information to termdocument for indexing
 - » Difficult for very large numbers of documents
- Format of inverted file is designed for fast query processing
 - » Must also handle updates
 - » Compression used for efficiency

Index Creation

- Index Distribution
 - Distributes indexes across multiple computers and/or multiple sites on a network
 - Essential for fast query processing with large numbers of documents
 - Many variations
 - » Document distribution, term distribution, replication
 - P2P and distributed IR involve search across multiple sites

Information Retrieval INFO 4300 / CS 4300

Last class

- Precision/recall exercise
- Search engine architecture
 - » The indexing process
- Today
 - » The querying process
 - Web crawlers
 - » Retrieving web pages
 - » Crawling the web

User Interaction

- Query input
 - Provides interface and parser for query language
 - Most web queries are very simple (few operators), other applications may use forms
 - Query language used to describe more complex queries and results of query transformation
 - » e.g., Boolean queries, Indri and Galago query languages
 - » similar to SQL language used in database applications
 - » IR query languages also allow content and structure specifications, but focus on content

User Interaction

Query transformation

- Improves initial query, both before and after initial search
- Includes text transformation techniques used for documents (e.g. tokenization, stopping)
- Spell checking and query suggestion provide alternatives to original query
- Query expansion and relevance feedback modify the original query with additional terms

User Interaction

- Results output
 - Constructs the display of ranked documents for a query
 - Generates *snippets* to show how queries match documents
 - Highlights important words and passages
 - Retrieves appropriate *advertising* in many applications
 - May provide *clustering* and other visualization tools

Ranking

Scoring

- Calculates scores for documents using a ranking algorithm
- Core component of search engine
- Basic form of score is $\sum_\iota \mathsf{q}_i \, \mathsf{d}_i$
 - » q_{i} and d_{i} are query and document term weights for term i
- Many variations of ranking algorithms and retrieval models

Ranking

- Performance optimization
 - Designing ranking algorithms for efficient processing
 - » Term-at-a time vs. document-at-a-time processing
 - » Safe vs. unsafe optimizations
- Distribution
 - Processing queries in a distributed environment
 - Query broker distributes queries and assembles results
 - Caching is a form of distributed searching

Evaluation

Logging

- Logging user queries and interaction is crucial for improving search effectiveness and efficiency
- Query logs and clickthrough data or dwell time used for query suggestion, spell checking, query caching, ranking, advertising search, and other components

Ranking analysis

- Measuring and tuning ranking effectiveness
- Performance analysis
 - Measuring and tuning system efficiency

Information Retrieval INFO 4300 / CS 4300

Last class

- Precision/recall exercise
- Search engine architecture
 - » The indexing process

Today

- » The querying process
- Web crawlers
 - » Retrieving web pages
 - » Crawling the web

How Does It Really Work?

- This course explains these components of a search engine in more detail
- Often many possible approaches and techniques for a given component
 - Focus is on the most important alternatives
 - » i.e., explain a small number of approaches in detail rather than many approaches
 - "Importance" based on research results and use in actual search engines

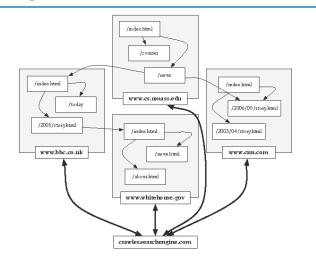
Web Crawler

If the right documents are not stored in the search engine, no search technique will find relevant information!!

- Crawlers: find and download web pages automatically
 - Provide the collection for searching
 - What pages should we search?

Retrieving Web Pages

- Every page has a unique uniform resource locator (URL)
- Web pages are stored on web servers that use HTTP to exchange information with client software
- e.g.,


http://www.cs.umass.edu/csinfo/people.html http www.cs.umass.edu /csinfo/people.html scheme hostname resource

Retrieving Web Pages

- Web crawler client program connects to a domain name system (DNS) server
- DNS server translates the hostname into an internet protocol (IP) address and tries to connect to a server with that address
- Crawler then attempts to connect to server host using specific *port*
- After connection, crawler sends an HTTP request to the web server to request a page

 usually a GET request

Crawling the Web

Web Crawler

- Starts with a set of seeds, which are a set of URLs given to it as parameters
- Seeds are added to a URL request queue
- Crawler starts fetching pages from the request queue
- Downloaded pages are parsed to find link tags that might contain other useful URLs to fetch
- New URLs added to the crawler's request queue, or *frontier*
- Continue until no more new URLs or disk full