
Information Retrieval
INFO 4300 / CS 4300

!  Last class

– Search engine architecture...finished.
– Web crawlers

» Retrieving web pages

!  Today
» Crawling the web

! Complications
! Desktop crawlers
! Document feeds

Web Crawler

!  Starts with a set of seeds, which are a set of
URLs given to it as parameters

!  Seeds are added to a URL request queue
!  Crawler starts fetching pages from the request

queue
!  Downloaded pages are parsed to find link tags

that might contain other useful URLs to fetch
!  New URLs added to the crawler’s request

queue, or frontier
!  Continue until no more new URLs or disk full

Web Crawling

!  Web crawlers spend a lot of time waiting for
responses to requests

!  To reduce this inefficiency, web crawlers use
threads and fetch hundreds of pages at once

!  Crawlers could potentially flood sites with
requests for pages

!  To avoid this problem, web crawlers use
politeness policies
–  e.g., delay between requests to same web server

Controlling Crawling
!  Even crawling a site slowly will anger some web

server administrators, who object to any copying
of their data

!  robots.txt file can be used to control crawlers

robots.txt

!  !"#$#%#&'(#"')*+*,)'%"-.&/"0102*3/"0'4“"#5#$0”6'
&*7*$/3'-%%/00'$#'-'./50*$/8'#"*)*,-&&9'("#7':;;<'
= ...>"#5#0?$>#")1.%1,#"#5#$0>@$7&'

!  A/50*$/'-,,#B,%/0'*$0'"/CB/0$'(#"'.@-$'%-,4,#$6'
5/'%"-.&/3'
=  D#"'-'0/"+/"8'%"/-$/'-'E&/'/robots.txt
=  F@*0'E&/'02/%*E/0'-%%/00'"/0$"*%G#,0'

robots.txt - example

www.robotstxt.org

Simple Crawler Thread
Information Retrieval
INFO 4300 / CS 4300

!  Last class

– Search engine architecture...finished.
– Web crawlers

» Retrieving web pages

!  Today
» Crawling the web

! Complications
! Desktop crawlers
! Document feeds

Complications

!  Freshness
!  Focused crawling
!  Deep web
!  Distributed crawling

Freshness

!  Web pages are constantly being added,
deleted, and modified

!  Web crawler must continually revisit pages
it has already crawled to see if they have
changed in order to maintain the freshness
of the document collection
– stale copies no longer reflect the real contents

of the web pages

Freshness
!  HTTP protocol has a special request type

called HEAD that makes it easy to check
for page changes
–  returns information about page, not page itself

Freshness

!  Not possible to constantly check all pages
– must check important pages and pages that

change frequently
!  Freshness metric: the proportion of pages

that are fresh, i.e., up-to-date
!  Optimizing for this metric can lead to bad

decisions, such as not crawling popular
sites

!  Age is a better metric

Freshness vs. Age Age

!  Older a page gets, the more it costs not to
crawl it
– e.g., expected age with mean change

frequency ! = 1/7 (one change per week)

Focused Crawling

!  Attempts to download only those pages
that are about a particular topic
– used by vertical search applications

!  Rely on the fact that pages about a topic
tend to have links to other pages on the
same topic
– popular pages for a topic are typically used as

seeds
!  Crawler uses text classifier to decide

whether a page is on topic

Deep Web

!  Sites that are difficult for a crawler to find are
collectively referred to as the deep (or
hidden) Web
– much larger than conventional Web

!  Three broad categories:
–  private sites

» no incoming links, or may require log in with a valid
account

–  form results
» sites that can be reached only after entering some data

into a form
–  scripted pages

» pages that use JavaScript, Flash, or another client-side
language to generate links

Sitemaps

!  Sitemaps contain lists of URLs and data
about those URLs, such as modification
time and modification frequency

!  Generated by web server administrators
!  Tells crawler about pages it might not

otherwise find
!  Gives crawler a hint about when to check a

page for changes

Sitemap Example

