Information Retrieval INFO 4300 / CS 4300

- Remaining Work for the Course
 - Project 3 Programming (Fri)
 - » Hardcopy (Mon)
 - Critique 3 (Mon)
 - » Hardcopy (Tues)
 - Final exam
 - » Info on course web page
 - » Wednesday, December 18th, 7-9:30 PM, Barton Hall 100 East-Main Floor.

Quick Semester Review

- High-level view of search engine architecture
 - Indexing

Quick Semester Review

- High-level view of search engine architecture
 - Querying

Text Acquisition

- Web crawlers
 - How to retrieve web pages
 - Crawling the web
 - » Basic algorithm for web crawling

```
procedure CrawlerThread(frontier)
while not frontier.done() do
website ← frontier.nextSite()
url ← website.nextURL()
if website.permitsCrawl(url) then
text ← retrieveURL(url)
storeDocument(url, text)
for each url in parse(text) do
frontier.addURL(url)
end for
end if
frontier.releaseSite(website)
end while
end procedure
```

Text Acquisition

- Web crawlers
 - How to retrieve web pages
 - Crawling the web
 - » Basic algorithm for web crawling
 - » Politeness policies
 - » Complications
 - Freshness (vs. Age) andrelevant HTTP protocol request options
 - ◆ Focused crawling (role of classification methods)
 - ◆ Deep web
 - » Web crawls vs. desktop crawls
 - » Usefulness of document feeds (RSS)

Text Acquisition

- Web crawlers
 - File conversion issues
 - Storing the documents
 - » File compression
 - » BigTable Google's document storage system
 - » (Near)Duplicate detection

Text Transformation

- Word occurrence statistics
 - Zipf's Law distribution
 - Heap's Law vocabulary growth
- Issues for
 - Tokenization
 - Stopword removal
 - Stemming
 - Phrases
 - Document structure
 - Link analysis
 - Information extraction

Index Creation

- Inverted indexes
 - Word counts, proximity, fields and extents
- Index construction
 - Jon Park...
- Coding schemes for index compression

Retrieval Models

- Boolean retrieval
- Vector Space model
- Probabilistic Models
 - Binary independence model
 - BM25
 - Language models
 - » Query likelihood model
 - » Document likelihood model
 - » Relevance model (compares the LMs representing the query and document topics)
- Learning to rank

User Interaction: Query Refinement

- Query transformation: stemming
- Query expansion
 - Thesaurus-based
 - Term association measures
 - Relevance feedback

Evaluation

- Covered throughout the semester
- Methods
 - Training, testing
 - Pooling
 - Query logs
- Metrics
 - Recall, precision, F-measure
 - Precision at rank R
 - Reciprocal rank
 - DCG, NDCG

Clustering and Classification

Recently covered

Guest lectures

- Music
- Patent retrieval
- Topic modeling

(Jon covered material already mentioned.)

Other stuff

- Critique papers
- Analytical questions
- Programming

Course evaluations: 1%