Information Retrieval

INFO 4300 / CS 4300

- Retrieval models
 - Older models
 - » Boolean retrieval
 - » Vector Space model
 - Probabilistic Models
 - » BM25
 - » Language models
 - Combining evidence
 - » Inference networks
 - » Learning to Rank

Language Model

- Unigram language model
 - probability distribution over the words in a language
 - generation of text consists of pulling words out of a "bucket" according to the probability distribution and replacing them
- N-gram language model
 - some applications use bigram and trigram language models where probabilities depend on previous words

Language Model

- A topic in a document or query can be represented as a language model
 - i.e., words that tend to occur often when discussing a topic will have high probabilities in the corresponding language model
- Multinomial distribution over words
 - text is modeled as a finite sequence of words, where there are t possible words at each point in the sequence
 - commonly used, but not only possibility
 - doesn't model burstiness

LMs for Retrieval

- 3 possibilities:
 - probability of generating the query text from a document language model
 - probability of generating the document text from a query language model
 - comparing the language models representing the query and document topics
- Models of topical relevance

Query-Likelihood Model

- Rank documents by the probability that the query could be generated by the document model (i.e. same topic)
- Start with a query, so calculate P(D|Q) to rank the documents
- Use Bayes' Rule

$$p(D|Q) \stackrel{rank}{=} P(Q|D)P(D)$$

Assuming prior is uniform, unigram model

$$P(Q|D) = \prod_{i=1}^{n} P(q_i|D)$$

Estimating Probabilities

Obvious estimate for unigram probabilities is

$$P(q_i|D) = \frac{f_{q_i,D}}{|D|}$$

- Maximum likelihood estimate
 - makes the observed value of $f_{q;D}$ most likely
- Problem: If query words are missing from document, score for the document will be 0
 - Missing 1 out of 6 query words (score of 0) is the same as missing 5 out of 6

Smoothing

- Document texts are a sample from the language model
 - Missing words should not have zero probability of occurring
- Smoothing is a technique for estimating probabilities for missing (or unseen) words
 - lower (or *discount*) the probability estimates for words that are seen in the document text
 - assign that "left-over" probability to the estimates for the words that are not seen in the text

Estimating Probabilities

- Estimate for unseen words is $\alpha_D P(q_i|C)$
 - P(q_i|C) is the probability for query word *i* in the collection language model for collection C (background probability)
 - $-\alpha_D$ is a parameter
- Estimate for words that occur in a query is

$$(1 - \alpha_D) P(q_i|D) + \alpha_D P(q_i|C)$$

• Different forms of estimation come from different α_D

Jelinek-Mercer Smoothing

- α_D is a constant, λ
- Gives estimate of

$$p(q_i|D) = (1-\lambda)\frac{f_{q_i,D}}{|D|} + \lambda \frac{c_{q_i}}{|C|}$$

Ranking score

$$P(Q|D) = \prod_{i=1}^{n} ((1-\lambda) \frac{f_{q_i,D}}{|D|} + \lambda \frac{c_{q_i}}{|C|})$$

- Use logs for convenience
 - accuracy problems multiplying small numbers

$$\log P(Q|D) = \sum_{i=1}^{n} \log((1-\lambda)\frac{f_{q_{i},D}}{|D|} + \lambda \frac{c_{q_{i}}}{|C|})$$

Where is tf.idf Weight?

$$\log P(Q|D) = \sum_{i=1}^{n} \log((1-\lambda)\frac{f_{q_{i},D}}{|D|} + \lambda \frac{c_{q_{i}}}{|C|})$$

$$= \sum_{i:f_{q_{i},D}>0} \log((1-\lambda)\frac{f_{q_{i},D}}{|D|} + \lambda \frac{c_{q_{i}}}{|C|}) + \sum_{i:f_{q_{i},D}=0} \log(\lambda \frac{c_{q_{i}}}{|C|})$$

$$= \sum_{i:f_{q_{i},D}>0} \log \frac{((1-\lambda)\frac{f_{q_{i},D}}{|D|} + \lambda \frac{c_{q_{i}}}{|C|})}{\lambda \frac{c_{q_{i}}}{|C|}} + \sum_{i=1}^{n} \log(\lambda \frac{c_{q_{i}}}{|C|})$$

$$\stackrel{rank}{=} \sum_{i:f_{q_{i},D}>0} \log \left(\frac{((1-\lambda)\frac{f_{q_{i},D}}{|D|}}{\lambda \frac{c_{q_{i}}}{|D|}} + 1\right)$$

proportional to the term frequency, inversely proportional to the collection frequency

Dirichlet Smoothing

• α_D depends on document length

$$\alpha_D = \frac{\mu}{|D| + \mu}$$

Gives probability estimation of

$$p(q_i|D) = \frac{f_{q_i,D} + \mu \frac{c_{q_i}}{|D|} + \mu}{|D| + \mu}$$

and document score

$$\log P(Q|D) = \sum_{i=1}^{n} \log \frac{f_{q_i, D} + \mu \frac{c_{q_i}}{|D|}}{|D| + \mu}$$

Query Likelihood Example

For the term "president"

$$-f_{qi,D}$$
 = 15, c_{qi} = 160,000

• For the term "lincoln"

$$-f_{qi,D} = 25, c_{qi} = 2,400$$

- number of word occurrences in the document |d| is assumed to be 1,800
- number of word occurrences in the collection is 10⁹
 - 500,000 documents times an average of 2,000 words
- $\mu = 2,000$

Query Likelihood Example

$$QL(Q, D) = \log \frac{15 + 2000 \times (1.6 \times 10^5/10^9)}{1800 + 2000} + \log \frac{25 + 2000 \times (2400/10^9)}{1800 + 2000}$$

$$= \log(15.32/3800) + \log(25.005/3800)$$

$$= -5.51 + -5.02 = -10.53$$

Negative number because summing logs of small numbers

BM25 comparison

Effect of term frequencies

			_	
Frequency of	Frequency of	BM25		
"president"	"lincoln"	score		Q۱
15	25	20.66	1	1
15	1	12.74	4	3
15	0	5.00	5	5
1	25	18.2	2	2
0	25	15.66	3	4

Query Likelihood Example

Frequency of	Frequency of	QL	
"president"	"lincoln"	score	
15	25	-10.53	1
15	1	-13.75	3
15	0	-19.05	5
1	25	-12.99	2
0	25	-14.40	4