
Information Retrieval
INFO 4300 / CS 4300

!  Last classes
– Text transformation

!  Next topics
–  Indexing

» Index construction
» Compression
» Ranking model

Indexing Process

Indexes

!  Indexes are a specialized data structure
designed to make search faster

!  Most common: inverted index
– general name for a class of structures
–  “inverted” because documents are associated

with words, rather than words with documents
– at the core of all modern web search engines
– support well over 500,000,000 queries/day

Query Process

Indexes and Ranking

!  Indexes are designed to support search
–  faster response time, supports updates

!  Text search engines use a particular form of
search: ranking
–  documents are retrieved in sorted order according

to a score computed using the document
representation, the query, and a ranking
algorithm

!  What is a reasonable abstract model for
ranking?
–  lets us discuss indexes without details of the

retrieval model

Abstract Model of Ranking

More Concrete Model Back to index construction...

Inverted Index

!  Each index term is associated with an
inverted list
– Contains lists of documents, or lists of word

occurrences in documents, and other information
– Each entry is called a posting
– The part of the posting that refers to a specific

document or location is called a pointer
– Each document in the collection is given a unique

number
–  Lists are usually document-ordered (sorted by

document number)

Example “Collection”

Simple Inverted
Index

Inverted Index
with counts

•  supports better

ranking algorithms

Inverted Index
with positions

•  supports

proximity matches

Proximity Matches

!  Matching phrases or words within a window
– e.g., "!"#$%&'()*%+,", or “find tropical within 5

words of fish”
!  Word positions in inverted lists make these

types of query features efficient
– e.g.,

Fields and Extents

!  Document structure is useful in search
–  field restrictions

» e.g., date, from:, etc.
– some fields more important

» e.g., title, headings

!  Options:
– separate index (set of inverted lists) for each

field type
– add information about fields to postings
– use extent lists

Extent Lists

!  An extent is a contiguous region of a
document
–  represent extents using word positions
–  inverted list records all extents for a given field

type
– e.g.,

extent list

Other Issues

!  Precomputed scores in inverted list
– e.g., list for “fish” [(1:3.6), (3:2.2)], where 3.6 is

total feature value for document 1
–  improves speed but reduces flexibility

!  Score-ordered lists
– query processing engine can focus only on the

top part of each inverted list, where the
highest-scoring documents are recorded

– very efficient for single-word queries

Auxiliary Structures
!  Inverted lists usually stored together in a

single file for efficiency
–  Inverted file

!  Vocabulary or lexicon
– Contains a lookup table from index terms to the

byte offset of the inverted list in the inverted file
– Either hash table in memory or B-tree for larger

vocabularies
!  Term statistics stored at start of inverted lists
!  Collection statistics stored in separate file

