NUMERICAL ANALYSIS: HOMEWORK 1
Instructor: Anil Damle
Due: February 5, 2024

PoOLICIES

You may discuss the homework problems freely with other students, but please refrain from looking
at their code or writeups (or sharing your own). Ultimately, you must implement your own code
and write up your own solution to be turned in. Your solution, including plots and requested output
from your code should be typeset and submitted via the Gradescope as a pdf file. This file must
be self contained for grading. Additionally, please submit any code written for the assignment as
zip file to the separate Gradescope assignment for code.

QUESTION 1:

Suppose A, B € R™ " are general square matrices, D € R™*" is a diagonal matrix, and u,v € R"
are vectors of length n. For the following mathematical expressions: determine an optimal way to
compute them (in terms of complexity in n, i.e., the number of required basic arithmetic operations
for a given n). Give the complexity and explain your reasoning (you need not prove “lower bounds”),
implement your procedure, demonstrate that your code scales correctly by timing your code as
n is increased and providing corroborating evidence (a sufficiently clear plot will suffice). You
may reorder and modify the expressions in any way you choose, so long as the result remains
mathematically equivalent to the given statement.

(a) Tr(D + wvl)
(b) uv”

(¢) (I +uul)v
(d) vTABu

In the preceding parts we considered “reordering” computations to achieve an asymptotically dif-
ferent runtime. Now we will consider something more practical, how various optimizations in
numerical codes (and their interface with hardware) impact the practical runtime of a common op-
eration: matrix multiplication. Write code that implements computing the product of two matrices
in the following ways:

(e) C(i,5) = > A(i, k)B(k, j); for this part you can only use built in scalar multiplication

(f) C(:,1) = A(B(:,1)); you may now leverage your chosen languages calls to compute matrix-
vector products.

(g) As a point of comparison we will also use the “built in” routine for computing matrix-matrix
multiplication (e.g., simply writing C' = A*B in Matlab), this is our way of accessing the
routine for matrix-matrix multiplication from BLAS (http://www.netlib.org/blas/).

For all the above algorithms clearly illustrate that your implementation is O (n3), compare and
contrast their performance (again, a clear plot will help here). Argue about why you believe you
might be seeing such differences.

Remarks: Up to constants, we expect the arithmetic complexity of the above computations, and
hence the time taken for sufficiently large n, to behave like n? for some non-negative ¢. When you
are construing your plots think carefully about how you can generate a plot where the slope of
the corresponding line can be used to determine/estimate g. Here is a quick hint: simply plotting
t(n), the time taken, vs n does not have this property and is not an easy way to distinguish
between various complexities. Is something like log(¢(n)) vs log(n) a better choice? How would
different exponents manifest in this case? Lastly, for a given n run your timing experiment multiple
times—how consistent are the measurements? What are the potential implications of this and are
there ways to mitigate them?

QUESTION 2:

For this problem, let A € R™*™ be a square matrix and = € R™ be a vector of length n. Prove the
following:

Nzl < Hlzll2 < vllzlloo
- Al < Vol Al

3. For any orthogonal matrix @ € R™" : ||Qzx|2 = ||=]|2.

N =

4. ||All2 = Omax, Where opmax is the largest singular value of A.

5. For any orthogonal matrix @ € R™ " : ||QAll2 = || 4]|2-

QUESTION 3:

For this problem, let V' € R™*" with m > n be a matrix with linearly independent columns, prove
that

1. VTV is positive definite

2. VVT is positive semi-definite but not positive definite

QUESTION 4:

For differentiable functions f(z), where the input z may be a vector z = (x1, z2,...,x,), we define
the relative condition number ko(z) of computing f(z) at = as

@l
"2 =)/l

where J is the Jacobian of f.

1. Compute ka(x) for subtraction, i.e. f(x) = x; — x2. When, if ever, is this an ill-conditioned
problem?

2. Compute kg(x) for multiplication, i.e. f(x) = z1x2. When, if ever, is this an ill-conditioned
problem?

