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Instructor: Anil Damle

In lecture we briefly discussed some perturbation theory for the eigenvalues and eigenvectors
of symmetric matrices. As part of this discussion we also formalized how to talk about distances
between subspaces.

Notation and assumptions

Throughout these notes we will assume that A ∈ Rn×n and A = AT . There are extensions of
this theory to case where A is not symmetric, but we will not cover those here. We will denote
the eigenvalues and vectors of a as λ1, λ2, . . . , λn and v1, v2, . . . , vn respectively, and assume that
the eigenvalues are ordered such that λ1 ≥ λ2 ≥ · · · ≥ λn. A = V ΛV T denotes the spectral
decomposition of A.

Subspace distance

When we talk about computing eigenvectors associated with simple eigenvalues, what we actually
concerned with is computing the one-dimensional invariant subspace that eigenvector spans. No-
tably, this alleviates issues like the fact that even if we require ‖v‖ = 1 eigenvectors are not unique.
Similarly, we are often interested with computing an `-dimensional invariant subspace associated
with ` eigenvalues of A. As such, we need a way to reason about how far apart two subspaces are.

Let W ∈ Rn×` and U ∈ Rn×` be matrices with orthonormal columns representing two subspaces
of interest. We can define the distance between the range of W and the range of U as

dist(W,U) = ‖WW T − UUT ‖2, (1)

where we have slightly abused notation to let W and V also represent their respective ranges. We
remark that 0 ≤ dist(W,U) ≤ 1, with the distance being zero if the subspaces are the same and
1 if there exist vectors in W and U that are orthogonal (i.e., there exists some x and y such that
(Wx)T (Uy) = 0).

We should expect our notation of distance to be invariant to the specific orthonormal basis we
choose to represent a subspace and this definition satisfies that condition. For any two orthogonal
matrices Q1 and Q2 we see that
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T ‖2 = ‖WW T − UUT ‖2.

More generally, the basis independence follows from the fact that the orthogonal projector onto a
subspace is unique.

In the case where ` = 1 this reduces to

dist(w, u) =
√

1− (wTu)2,

where we have switched to a lower case w and u to highlight that they are just vectors. Since w
and u are normalized we can use wTu = cos(θ) to express the distance between the subspaces as
dist(w, u) = sin(θ), where θ represents the angle between the subspaces.

In practice, if we want to compute the distance between two subspaces naively using () directly
is unnecessarily expensive. Fortunately, we also have that

dist(W,U) =
√

1− σmin(W TV )2.
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Eigenvalue perturbation bounds

It is useful to know how much we can change the eigenvalues of a matrix A by perturbing it by some
“small” matrix E. For symmetric matrices, we can actually show that the most a single eigenvalue
can change is bounded the size of perturbation. Specifically, given A = AT and E = ET

|λi(A+ E)− λi(A)| ≤ ‖E‖2,

for i = 1, 2, . . . , n. This is a simplification Weyl’s inequality.
Notably, this is the best we could hope for—loosely speaking the conditioning of each eigenvalue

is one. In contrast, for non-symmetric matrices the story can be much more complicated and for
certain matrices there are eigenvalues that are way more sensitive to perturbations.

Eigenvalue perturbation bounds

Complementing the prior result about eigenvalues, we may also want to characterize how much
the invariant supspaces of A can change when it is perturbed. Let i be the index of a simple
eigenvalue of A and let γ = min(|λi − λi+1|, |λi − λi−1|) denote the gap between λi and the next
closest eigenvalue.1 In this setting, if ‖E‖2 ≤ γ/5 then

dist(vi, v̂i) ≤
‖E‖2
γ

, (2)

where v̂i is an eigenvector associated with λi(A+E). This is a simplified version of the Davis-Kahan
Theorem.

The conditions under which (2) hold ensure that associating vi and v̂i is sensible. Since γ
represents a gap between the eigenvalue of interest and others, we see that more well separated
eigenvalues have more stable invariant subspaces for a fixed size perturbation (and we can charac-
terize their behavior for larger perturbations).

1If i = 1 then γ = λ1 − λ2 and if i = n then γ = λn−1 − λn.
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