
Numerical analysis: Project 1
Instructor: Anil Damle
Due: March 11, 2024

Policies

You are permitted to work in groups of up to three for this project and each group only needs to
submit a single report. While it is okay to discuss the project with other groups (similar to the
HW collaboration policy), every group must produce their own code and report. The report should
address all of the items referred to as goals or questions in the project description. You may
refer to inanimate sources (e.g., textbooks) to help you answer the questions and tackle the goals.
However, your sources must be explicitly cited. For example, one of the goals requires writing
pseudocode for an algorithm that exists, if you go to an external source to read more about it and
help generate the pseudocoade you must cite where it came from.

Part of the purpose of this project is to provide you with an opportunity to practice writing more
free form reports and carefully choosing what plots, results, etc. are needed to convince us your
solution is correct. Therefore, some of the goals are leading, but do not give a concrete list of
exactly what has to be included. The questions tend to be more concrete.

The report, including plots and requested output from your code, should be typeset and submitted
via the Gradescope as a pdf file. This file must be self contained for grading. Additionally, please
submit any code written for the assignment as zip file to the separate Gradescope assignment for
code.

Preamble

The goal of this project is to develop a method to compress deep learning models based on variants
of tools we have learned about in class. In particular, in this project you will learn about the
column-pivoted QR factorization (a variant on the QR factorization) and implement one, under-
stand why “pivoting” is useful and in some cases necessary for QR factorizations, and then use
your implementation to compress a simple machine learning model for classifying images in the
FashionMNIST data set. Please note that while we will be working with ML models, nothing we
do will require “training” or “fine-tuning” and therefore the entire project can be easily completed
in Python (with NumPy), Julia, or Matlab; there is no need to use ML frameworks such as PyTorch
or TensorFlow.

Column-pivoted QR factorizations

In class we developed a method based on Householder reflectors to compute the factorization

A = QR

1

given A ∈ Rm×n.1 In particular, for m ≤ n we used Householder reflectors to build a sequence of
matrices Q(1), . . . , Q(n) such that

Q(n) · · ·Q(1)A = R, (1)

and then let Q = Q(1) · · ·Q(n). If m > n we “redefined” Q to be only the first n columns of
Q(1) · · ·Q(n) and R to be the top n× n block of R from eq. (1).

While for the uses we discussed in class a standard QR factorization suffices, there are many
other settings where it is useful to introduce the concept of pivoting to a QR factorization. One
example is the construction of low-rank approximations that can sometimes be interpreted more
readily than the optimal one produced by the SVD. Another is the construction of sparse solutions to
least squares problems. Let’s consider the latter example first, followed by low-rank approximations.

Basic solutions to least-squares problems

Assume m > n and consider the least-squares problem

min
x
‖b−Ax‖22. (2)

We can interpret this problem as trying to fit the vector b using a linear combination of the columns
of A. However, if A is highly ill-conditioned there are many vectors x that yield nearly the same
predictions Ax—so we get to choose which one to pick. In class we saw one approach is to try and
choose x to have small norm. However, another approach is to try and choose x to be sparse.2

Let’s pretend for a moment that we would like a factorization of A that can be used to solve
LS problems for many b.3 In that case, we may want to identify a subset of columns of A that for
any b can be used to achieve a nearly optimal fit. More specifically we may want to identify some
integer k and k columns of A denoted by the index set C such that for any b the solution to

min
z
‖b−A(: C)z‖22 (3)

has nearly the same optimal value as eq. (2). Solving eq. (3) then yields a k-sparse approximate
solution to eq. (2) by setting x(C) = z and all other entries of x to zero. Beyond sparsity, if we
have interpretable labels for columns of A (e.g., they are features for a regression task), C tells us
which features are “most important” in some sense.

Interpolative decompositions

Given the SVD of a matrix A denoted A = UΣV T , we can recover the optimal rank-k approximation
of A as Ak = U1Σ1V

T
1 where U1 is the first k columns of U, V1 is the first k columns of V, and

Σ1 is the upper left k × k block of Σ. However, if A is structured (e.g., the columns are sparse or
have clear meaning) that structure may be lost in the SVD. For example, even if the columns of A
are sparse, the left singular vectors will generally not be. Therefore, it can be desirable to build a
low-rank approximation of A that preserves structure and/or interpretation.

Similar to above, this can be accomplished by identifying an integer k and k columns of A
denoted by the index set C such that

A ≈ A(:, C)B
1Recall that there are subtle variations we can consider if m > n; here we will always be referring to the reduced

QR factorization.
2Finding sparse solutions is a huge field, we are just considering one simple approach and not discussing others.
3For any fixed b there is a slight variant on the idea we will discuss later that is preferable.

2

for some k×n matrix B. The interpretation here is that we identify k columns of A that can be used
to approximately represent any column of A (to some desired accuracy). As before, these columns
can be thought of as the “most important” columns of A and if columns of A are structured than
the representation of the range of the low-rank factorization retains this structure—as it is built
out of columns of A themselves.

The mathematics of a column-pivoted QR factorizations

We will now how we can use a (pivoted) QR factorization to solve the above problems. However,
first let’s continue our discussion omitting pivoting; we will then see why it is necessary. To
simplify our discussion, we will assume throughout this project that A has full-rank in the sense
that σmin(m,n) > 0 (i.e., A has linearly independent rows if m ≤ n and linearly independent columns
if m ≥ n). For any k < min(m,n) we can partition a QR factorization as

A =
[
Q1 Q2

] [R11 R12

R22

]
,

where ` = min(m,n), Q1 ∈ Rm×k, Q2 ∈ Rm×`−k, R11 ∈ Rk×k, R12 ∈ Rk×n−k, and R22 ∈ R`−k×n−k.
Such a partition reveals how a QR factorization can be used for the above problems.

Question 1: Show that if z solves

min
z
‖A(:, 1 : k)z − b‖22

then ∥∥∥∥A [z0
]
− b
∥∥∥∥

2

≤ ‖R22‖2‖xls‖2 + ‖b−Axls‖2,

where xls solves
min
x
‖Ax− b‖22.

In other words, the residual from the sparse solution cannot be much larger than the optimal
residual.

Question 2: Show that there exists a matrix B such that

‖A−A(:, 1 : k)B‖2 = ‖R22‖2

and
‖A(:, 1 : k)−A(:, 1 : k)B(:, 1 : k)‖2 = 0.

The second condition ensures that k columns of A are exactly represented by the rank-k
factorization A(:, 1 : k)B.

In both of the above results, we see that the effectiveness of using a QR factorization to solve
our problem hinged on ‖R22‖2 being small. However, for a QR factorization without any pivoting
this is unlikely to be the case. In fact, ‖R22‖2 could be quite large. Therefore, we will adapt our
QR factorization algorithm to try and ensure ‖R22‖2 is small (when possible).

3

Question 3: Show that
‖R22‖2 ≤ σ1(A)

and that for any m,n, and k with m ≥ n and k < min(m,n) there exists a matrix A such that

‖R22‖2 = σ1(A).

This shows that while R22 is bounded in size by the scale of A, there are examples where it is
that large.

As stated, eq. (1) does not admit any flexibility to control R22. So, we will instead consider a
factorization of the form

AΠ = QR (4)

where Π is an n × n permutation matrix and Q and R are as in eq. (1). The key here is that by
allowing for our algorithm to also compute a permutation matrix Π we have some ability to force
R22 to be small. In the next section we will discuss how this is accomplished, but let’s first see how
such a factorization can help address the prior two problems. For any k < min(m,n) let

A
[
Π1 Π2

]
=
[
Q1 Q2

] [R11 R12

R22

]
(5)

be a partition of eq. (4) where Π1 is the first k columns of Π and Π2 is the remaining n−k columns;
the remainder of the factorization is partitioned as before. Moreover, let the set C denote the set
of indices “selected” by Π1. In other words C is such that A(:, C) = AΠ1.

Question 4: Show that if we have a factorization of the form eq. (5) then there exists a
matrix B such that

‖A−A(:, C)B‖2 = ‖R22‖2
and

‖A(:, C)−A(:, C)B(:, C)‖2 = 0.

Here we are just rewriting the earlier result using the permutations. A similar thing can be
done for the least-squares problem.

An algorithm to compute a column-pivoted QR factorization

We are now finally ready to discuss an algorithm to compute eq. (4). Trying to solve something
like minΠ ‖R22‖2 is provably hard, so we will resort to a greedy heuristic.4

Structurally, we will compute our factorization similar to what we did for pivoted LU factorizations—
interlace computing permutations and “reductions.” In particular, instead of eq. (1) we will com-
pute a factorization of the form

Q(n) · · ·Q(1)AΠ(1) · · ·Π(n−1) = R, (6)

by alternating the computation of Π(i) and Q(i). I.e., we will compute Π(1) to swap the first column
of A with some other column and then compute the matrix Q(1) to reduce the first column of
AΠ(1) to upper triangular form, compute Π(2) to swap the second column of Q(1)AΠ(1) with some

4The heuristic is based on work by Businger and Golub in 1965 and while there have been further developments
in the area, the original algorithm remains the most widely used and is highly effective in practice.

4

column whose index is greater than or equal to 2 and so on. We then let Q = Q(1) · · ·Q(n) and
Π = Π(1) · · ·Π(n).

The greedy heuristic we will follow is to remove the largest column from R22 at each step.
Specifically, lets say we have completed k steps of our process have have the partial factorization

Q(k) · · ·Q(1)AΠ(1) · · ·Π(k) =

[
R11 R12

M

]
, (7)

where R11 ∈ Rk×k is upper triangular and M ∈ R(m−k)×(n−k) is dense (because we have not yet
reduced it to upper triangular form).

Question 5: Show that if we continue the factorization in eq. (7) without any additional
permutations then ‖R22‖2 = ‖M‖2.

To accomplish our goal, we will pick Π(k+1) to “remove” the largest column of M from R22 at
step k + 1. Specifically, let

j = arg max
i=k+1,...,n

‖M(:, i)‖2.

We then let Π(k+1) be the permutation that swaps columns k + 1 and j. After that we proceed to
compute Q(k+1) to reduce the appropriate part of the column to upper triangular form an continue.
Note that we could also try and pick j such that ‖R22‖2 at the next step is minimized, but that
is substantially more expensive since we have to compute/apply n − k Householder reflectors and
then compute an equal number of spectral norms—this actually affects the asymptotic complexity
of the method.

Question 6: Show that Π1 in eq. (5) only depends on Π(1) through Π(k). In other words,
if we just want/need C we can stop the factorization after k steps. We can also recover the
matrix B in our low-rank factorization without proceeding further.

Goal 1: Write pseudocode for the described algorithm, and show that its arithmetic com-
plexity is O(mnk) if we stop at step k.a

aIn practice there is a scheme to efficiently maintain the norms of the columns of M and update them at
each step. Feel free to work out how this works, i.e., how the norms get updated by Householder reflectors.
Such a scheme is practically far more efficient (albeit not without a few drawbacks), but does not change the
asymptotic complexity.

Goal 2: Implement a column pivoted QR factorization and for k = 20 show that your code
scales linearly in m and n and quadratically if m = n.

Goal 3: Build a matrix G ∈ R200×200 where Gi,j = e−2‖xi−xj‖22 and {xi}200
i=1 are i.i.d. random

points from the uniform distribution over the unit cube in 2d. Use your column pivoted QR
factoration to compute a low-rank approximation of G using its columns for k = 1, 2, . . . , 100
and show how the error compares with the optimal error for a rank-k approximation. This
shows us how much we are “loosing” by constraining our low-rank approximation.

Compressing a simple neural network

We are finally ready to develop a method for compressing a simple neural network using a column-
pivoted QR factorization. To illustrate how, we will start with a simple one hidden layer model

5

that has already been trained to achieve good accuracy. Let W ∈ Rd×n and a ∈ Rn represent the
weights in a model

y = σ(xTW)a, (8)

where x ∈ Rd is a data point and σ is a non-linear function applied entrywise to xTW. The question
we want to ask is if all n “neurons” (i.e., columns of W) are necessary. In other words, can we

identify some weights Ŵ ∈ Rd×n′
and a ∈ Rn′

with n′ < n such that for some target accuracy ε > 0

|σ(xTW)a− σ(xT Ŵ)â| ≤ ε

for any reasonable data point x.5 Note that here we are requesting good representation of the model
with out any additional retraining of the weights.

To model “reasonable” x we will simply use i.i.d. samples from the training data. Specifically,
let Xc ∈ Rd×nc represent nc data points that we refer to as a compression set (i.e., each column of

Xc is a data point). We can then re-frame the above question as finding Ŵ and â such that

‖σ(XT
c W)a− σ(XT

c Ŵ)â‖2 ≤ ε. (9)

Let Z = σ(XT
c W), and say we have computed a column-pivoted QR factorization of Z. Then, for

any k if we have that
‖Z(:, C)T − Z‖2 = ‖R22‖2

where T =
[
I R−1

11 R12

]
ΠT . Moreover, because the non-linearity is applied entrywise Z(:, C) =

σ(XT
c W (:, C)). Combining these facts we have that

‖σ(XT
c W)a− σ(XT

c W (:, C))Ta‖2 ≤ ‖R22‖2‖a‖2.

Letting Ŵ = W (:, C) and â = Ta we recover a model that satisfies eq. (9) with nc = k provided
that ‖R22‖2 is sufficiently small.6 This gives us a scheme to compress our model: (1) compute Z
using some compression data, (2) use the column-pivoted QR factorization to select k important
neurons, and (3) use the “interpolation” matrix T to correct the weights on the output.

A practical simplification

While it would be great to verify that ‖R22‖2‖a‖2 ≤ ε for our chosen ε, doing so becomes pro-
hibitively expensive in practice—we end up computing too many spectral norms. It turns out that
a reasonable heuristic to use is to simply choose k such that the diagonal element of R is suffi-
ciently small. Specifically, we choose k to ensure that |rk+1,k+1|/|r1,1| ≤ ε/‖a‖2—notably, this can
be checked as soon as Π(k+1) and Q(k+1) have been computed and applied. This is much faster to
compute and works well in practice.

Compressing a neural network

To extend the above idea to a multilayered network (albeit with only fully connected layers) we
simply iterate the above idea over layers. Say

fi(x) = σ(xW (i))

5There are several ways we could be more formal about this, e.g., writing an expectation over the (unknown)
data distribution, but for our purposes the slightly informal version suffices. The key point is that we only need the
approximation to be accurate for reasonable data.

6Specifically, ‖R22‖2 < ε/‖a‖2.

6

and our complete m layer model is

M(x) = sm(fm(fm−1(· · · f1(xT)))W (s)). (10)

In other words, it is a composition of m fully connected layers followed by a softmax layer denoted
sm with weights W (s).7 We can then do the following: (1) using Xc compress f1 as

f̂1(xT) = σ(xTW (i)(:, C))T,

(2) fold T into W (2) as

f2(f̂1(xT)) = σ(σ(xTW (i)(:, C))(Ŵ (2))),

where Ŵ (2) = TW (2), and (3) repeat by using f̂1(XT
c) to compress Ŵ (2) and so on. For simplicity,

will not do any compression of W (s) as we need to maintain a fixed output size.

ReLU and softmax

For this project we need to discuss two additional details. First, the nonlinearity σ we will use is
known as ReLU and mathematically defined as σ(x) = x if x ≥ 0 and σ(x) = 0 if x < 0. Second.
we will use our model to solve a classification task, i.e., given a data point xi we would like to
classify it into one of k categories. To accomplish this we pass the output of the final layer through
a softmax layer denoted sm. Specifically, given a vector z ∈ Rk

(sm(z))i =
ezi∑
i e

zi
.

In other words, it converts k numbers into probabilities that we can interpret as the probability
that data point xi has a given label. So, considering eq. (10) we have that the probability that xi
is assigned label j is (M(xi))j . We will then convert this to a simple prediction by labeling xi as
arg maxj(M(xi))j .

A concrete model

We now consider a specific problem. On the website you will find data that contains all the weights
W (1) through W (7) and W (s) (i.e., the model has seven layers plus the softmax) for a model trained
on the Fashion-MNIST8 data set. This data set contains 70,000 28×28 grayscale images of clothing
representing 10 types of item. The models task is to predict the class a given image belongs to,
e.g., is it a t-shirt or a coat. You will also find two parts of the data set, a compression data set,
Xc and a test data set Xtest along with its labels ytest encoded as numbers 1-10. We will measure
the accuracy of our model using the test set as

acc(M) =
number of correctly predicted labels for images in Xtest

total number of images in Xtest
.

Goal 4: Implement the model in eq. (10) using the provided weights. Compute and report
the test accuracy.

7More on this later.
8https://github.com/zalandoresearch/fashion-mnist

7

Goal 5: Form the matrix
σ(XT

c W
(1))

and show how the error of a rank-k approximation using a column-pivoted QR compares with
that of an SVD.a

aNote that while the SVD is optimal, it is not at all clear how we could use an SVD of σ(XT
c W

(1)) to sub-
select columns of W (1)—the structure of our low-rank factorization based on a column-pivoted QR factorization
is key.

Goal 6: Use the scheme outlined above to compress the first layer of the provided model,
i.e., we want to reduce the number of columns in W (1), and show how the accuracy varies as
the size of the model is reduced (i.e., start with some small enough ε such that no neurons are
removed and then gradually increase ε to get smaller and smaller models until the accuracy
degrades significantly). Your results/discussion should include a plot of the accuracy vs the
fraction of columns W (1) that remain. What do you observe?

Goal 7: Compress the whole model for a few ε you choose based on your answer to the
prior goal (e.g., picking points that seem like a reasonable trade off between model size and
accuracy). Again, report the accuracy of your compressed model vs the fraction of total

number of columns in Ŵ (1) through Ŵ (7) that remain. What do you observe? Comment on
your results and why (or why not) you feel the scheme implemented is practical/useful.

Goal 8: Finally, we come to the most open ended goal. The scheme outlined here for
compressing the complete model works through layers progressively compressing them one
at a time. However, compressing the first layer may impact how well later layers can be
compressed. So, it is not clear such an approach is anywhere near optimal if we are concerned
with the total number of parameters in our final model. Can you think up schemes that
produce a better overall trade-off between accuracy and model parameters (i.e., they achieve
a better accuracy than the simple approach for a given number of parameters)? Implement
your ideas and see how good of a scheme you can get. If you have other ideas to improve the
method (that do not involve “fine turning” the weights after compression), feel free to discuss
and implement them.

What to do if your column-pivoted QR factorization code does not work

If you are not able to get a reliable implementation of a column-pivoted QR factorization working
it is still possible to complete these later tasks. Specifically, Matlab, Julia, and NumPy all contain
functions to compute such a factorization (as it is part of LAPACK). The available routines will
not stop early and instead compute the full factorization always. However, this can still be used
for our task by retrospectively analyzing the diagonal of R to determine k and then splitting the
factorization appropriately. If you use these built-in routines, please say so in your report.

8

