
Bindel, Spring 2022 Numerical Analysis

2022-02-16

1 Cholesky
So far, we have focused on the LU factorization for general nonsymmetric ma-
trices. There is an alternate factorization for the case where A is symmetric
positive definite (SPD), i.e.

• A = AT ,

• xTAx > 0 for any x ̸= 0.

For such a matrix, the Cholesky factorization is

A = LLT or A = RTR

where L is a lower triangular matrix with positive diagonal and R is an
upper triangular matrix with positive diagonal (R = LT). The Cholesky
factor exists iff A is positive definite; in fact, the usual way to test numeri-
cally for positive definiteness is to attempt a Cholesky factorization and see
whether the algorithm succeeds or fails. And, unlike the LU factorization,
the Cholesky factorization is simply backward stable — no appeal to pivot
growth factors is required.

The Cholesky algorithm looks like Gaussian elimination. As with Gaus-
sian elimination, we figure out what goes on by block 2-by-2 factorization:[

A11 A12

A21 A22

]
=

[
L11 0
L21 L22

] [
LT
11 LT

21

0 LT
22

]
=

[
L11L

T
11 L11L

T
21

L21L
T
11 L21L

T
21 + L22L

T
22

]
Working block-by-block, we have

L11L
T
11 = A11

L21 = A21L
−T
11

L22L
T
22 = A22 − L21L

T
21

That is, we factor the leading block, do a solve to get the off-diagonal part,
and then form and factor a Schur complement system.

Note that the Schur complement

A22 − L21L
T
21 = A22 − A21A

−1
11 A12

Bindel, Spring 2022 Numerical Analysis

is the same Schur complement that we see in Gaussian elimination with par-
tial pivoting; and, as in Gaussian elimination, we can interpret the Schur
complement as the inverse of a submatrix of A−1. This is important because
any principal submatrix of an SPD matrix is SPD and inverses of SPD matri-
ces are SPD, so the Schur complements formed during Cholesky factorization
remain SPD.

In terms of basic Julia operations, Cholesky factorization looks like
1 # Overwrite the lower triangular factor of A with L
2 for j = 1:n
3 A[j,j] = sqrt(A[j,j])
4 A[j+1:n,j] /= A[j,j]
5 A[j+1:n,j+1:n] -= A[j+1:n,j]*A[j,j+1:n]'
6 end

This is very similar to the standard Gaussian elimination loop. The only
place where we might be concerned is that we could get into trouble if we
ever encountered a zero or negative diagonal element; but the fact that the
Schur complements remain SPD, together with the fact that the diagonals of
an SPD matrix are all positive, suffices to guarantee this will never happen.

2 Tricky tridiagonals
Consider the tridiagonal matrix

T =



a1 b1
c2 a2 b2

c3 a3 b3
.

cn−1 an−1 bn−1

cn an


What happens if we factor using Gaussian elimination? We’ll consider first
the case of no pivoting. At the first step of elimination, we subtract a mul-
tiple of the first row from the second row, introducing a zero in the (2, 1)
position. Then we subtract a multiple of the second row from the third row,
and so on. At each step, we only work with two rows of the matrix. Let’s
write the first two steps in pictures, assuming an implementation where we
are systematically overwriting the original matrix with lower and upper tri-
angular factors. At each step, we color the entries of the matrix that are

Bindel, Spring 2022 Numerical Analysis

transformed. In the first step, we have

a1 b1
c2 a2 b2

c3 a3 b3
.

cn−1 an−1 bn−1

cn an


→



a1 b1
l2 â2 b2

c3 a3 b3
.

cn−1 an−1 bn−1

cn an


At the next step, we have

a1 b1
c2 a2 b2

c3 a3 b3
.

cn−1 an−1 bn−1

cn an


→



a1 b1
l2 â2 b2

l3 â3 b3
.

cn−1 an−1 bn−1

cn an


At the end of the iteration, we have
a1 b1
c2 a2 b2

.
cn−1 an−1 bn−1

cn an

 =


1
l2 1

.
ln−1 1

ln 1




a1 b1

â2 b2
.

ân−1 bn−1

ân


In code, we go from the standard Gaussian elimination loop

1 # Overwrite A with L and U
2 for j = 1:n-1
3 A[j+1:n,j] /= A(j,j);
4 A[j+1:n,j+1:n] -= A[j+1:n,j]*A[j,j+1:n]'
5 end

to the simplified loop
1 # Overwrite T with L and U
2 for j = 1:n-1
3 T[j+1,j] /= T[j,j]
4 T[j+1,j+1] -= T[j+1,j]*T[j,j+1]
5 end

Bindel, Spring 2022 Numerical Analysis

The former loop does O(n2) work per step, while the latter does O(1) work
per step; that is, factoring a tridiagonal costs O(n) work per time, not the
O(n3) cost of factoring an ordinary matrix.

Of course, since most of the entries in a tridiagonal are zero, we waste
space by storing every entry explicitly, just as we waste time if we use the
general-purpose Gaussian elimination procedure. In general, it is better to
store only the nonzero entries of the matrix. For example, in the case of the
tridiagonal matrix, we might store the a, b, and c coefficients as vectors, in
which case Gaussian elimination looks like

1 # Overwrite a with the L entries, and b and c with the U entries
2 for j = 1:n-1
3 a[j+1] /= b[j]
4 b[j+1] -= a[j+1]*c[j]
5 end

We can similarly write O(n) time routines for forward and backward
substitution with the (bidiagonal) triangular factors of T .

3 Consider sparsity
Tridiagonal matrices (and more generally banded matrices) belong to a more
general family of sparse matrices, or matrices in which the vast majority of
the entries are zero.

Sparse matrices are a bit different from dense matrices. In a dense matrix,
we store the elements of the matrix in a fixed order. There is no need
to specify that a value at a specific location in memory corresponds to a
particular matrix element; that information is implicit. For special sparse
matrices, such as banded matrices, one can again come up with storage
formats that have this property. But in a general sparse matrix format,
though we only store the nonzero entries, we also have to store the location
of those entries. This has several consequences. One is that memory access
for sparse matrix computations is less regular than in the dense case, and so
they run at a lower flop rate than dense computations (though they typically
do far fewer flops than corresponding dense computations might, so it’s still
a win). Also, operations that are trivial in the dense case become more
complicated in the sparse case. For example, adding two dense matrices is
easy, but adding two sparse matrices can be rather complicated, depending
on the data structure that is used to store them.

Bindel, Spring 2022 Numerical Analysis

The one operation on sparse matrices that is really simple is matrix-vector
multiplication. This costs O(nnz) time, where nnz is the number of nonzeros
in the matrix. We will see that we can build iterative solvers that just use
this operation, but that’s a topic for another day. For now, the question is:
can we do fast Gaussian elimination on sparse matrices? The answer is yes,
but whether it’s a good idea or not depends a lot on the matrix. We turn to
why this is the case in the next section.

4 General sparse direct methods
Suppose A is a sparse matrix, and PA = LU . Will L and U also be sparse?
The answer depends in a somewhat complicated way on the structure of
the graph associated with the matrix A, the pivot order, and the order in
which variables are eliminated. Except in very special circumstances, there
will generally be more nonzeros in L and U than there are in A; these extra
nonzeros are referred to as fill. There are two standard ideas for minimizing
fill:

1. Apply a fill-reducing ordering to the variables; that is, use a factoriza-
tion

PAQ = LU,

where Q is a column permutation chosen to approximately minimize
the fill in L and U , and P is the row permutation used for stability.
The problem of finding an elimination order that minimizes fill is NP-
hard, so it is hard to say that any ordering strategy is really optimal.
But there is canned software for some heuristic orderings that tend to
work well in practice. From a practical perspective, then, the important
thing is to remember that a fill-reducing elimination order tends to be
critical to using sparse Gaussian elimination in practice.

2. Relax the standard partial pivoting condition, choosing the row per-
mutation P to balance the desire for numerical stability against the
desire to minimize fill.

For the rest of this lecture, we will consider the simplified case of struc-
turally symmetric matrices and factorization without pivoting (which is sta-
ble for diagonally dominant systems and positive definite systems).

Bindel, Spring 2022 Numerical Analysis

5 Sparse matrices, graphs, and tree elimina-
tion

Consider the following illustrative example of how factoring a sparse matrix
can lead to more or less dense factors depending on the order of elimination.
Putting in × to indicate a nonzero element, we have

× × × × ×
× ×
× ×
× ×
× ×

 =


×
× ×
× × ×
× × × ×
× × × × ×



× × × × ×

× × × ×
× × ×

× ×
×

 .

That is, L and U have many more nonzeros than A. These nonzero locations
that appear in L and U and not in A are called fill-in. On the other hand,
if we cyclically permute the rows and columns of A, we have

× ×
× ×

× ×
× ×

× × × × ×

 =


×

×
×

×
× × × × ×



× ×

× ×
× ×

× ×
×

 .

That is, the factorization of PAP T has no fill-in.
A sparse matrix A can be viewed as an adjacency matrices for an asso-

ciated graphs: make one node for each row, and connect node i to node j if
Aij ̸= 0. The graphs for the two “arrow” matrices above are:

1

2 3 4 5
5

1 2 3 4

These graphs of both our example matrices are trees, and they differ only
in how the nodes are labeled. In the original matrix, the root node is assigned

Bindel, Spring 2022 Numerical Analysis

the first label; in the second matrix, the root node is labeled after all the
children. Clearly, the latter label order is superior for Gaussian elimination.
This turns out to be a general fact: if the graph for a (structurally symmetric)
sparse matrix S is a tree, and if the labels are ordered so that each node
appears after any children it may have, then there is no fill-in: that is, L and
U have nonzeros only where S has nonzeros.

Why should we have no fill when factoring a matrix for a tree ordered
from the leaves up? To answer this, we think about what happens in the
first step of Gaussian elimination. Our original matrix has the form

S =

[
α wT

v S22

]
The first row of U is identical to the first row of S, and the first column of L
has the same nonzero structure as the first column of A, so we are fine there.
The only question is about the nonzero structure of the Schur complement
S22 − vwT/α. Note that the update vwT/α has nonzeros only where vi and
wj are both nonzero — that is, only when nodes i and j are both connected
to node 1. But node 1 is a leaf node; the only thing it connects to is its
parent! So if p is the index of the parent of node 1 in the tree, then we only
change the (p, p) entry of the trailing submatrix during the update — and
we assume that entry is already nonzero. Thus, the graph associated with
the Schur complement is the same as the graph of the original matrix, but
with one leaf trimmed off.

6 Nested dissection
Tree-structured matrices are marvelous because we can do everything in O(n)
time: we process the tree from the leaves to the root in order to compute
L and U , then recurse from the root to the leaves in order to do back sub-
stitution with U , and then go back from the leaves to the root in order to
do forward substitution with L. Sadly, many of the graphs we encounter in
practice do not look like trees. However, we can often profitably think of
clustering nodes so that we get a block structure associated with a tree.

For illustrative purposes, let us consider Gaussian elimination on a matrix
whose graph is a regular n×n mesh. Such a matrix might arise, for example,
if we were solving Poisson’s equation using a standard five-point stencil to
discretize the Laplacian operator. We then think of cutting the mesh in half

Bindel, Spring 2022 Numerical Analysis

by removing a set of separator nodes, cutting the halves in half, and so forth.
This yields a block structure of a tree consisting of a root (the separator
nodes) and two children (the blocks on either side of the separator). We can
now dissect each of the sub-blocks with a smaller separator, and continue on
in this fashion until we have cut the mesh into blocks containing only a few
nodes each. Figure 1 illustrates the first two steps in this process of nested
dissection.

We can get a lower bound on the cost of the factorization by figuring out
the cost of factoring the Schur complement associated with G, C, F , etc. Af-
ter we eliminate everything except the nodes associated with G, we pay about
2n3/3 flops to factor the remaining (dense) n-by-n Schur complement matrix
G. Similarly, we pay about 2(n/2)3/3 time to factor the dense (n/2)-by-
(n/2) complements associated with the separators C and F . Eliminating all
four separators then costs a total of ≈ 10n3/12 flops. Now, think of applying
nested dissection to blocks A, B, D, and E; eliminating the Shur comple-
ments associated with separators inside each of these blocks will take about
5(n/2)3/6 flops; all four together cost a total of 4(5(n/2)3/6) = (1/2)(5n3/6)
flops to factor. If we keep recursing, we find that the cost of factoring Schur
complements associated with all the separators looks like

5

6
n3

(
1 +

1

2
+

1

4
+ . . .

)
≈ 5

3
n3.

It turns out that forming each Schur complement is asymptotically not more
expensive than eliminating it, so that the overall cost of doing nested dissec-
tion on an n × n mesh with N = n2 unknown is also O(n3) = O(N1.5). It
also turns out that the fill-in is O(N logN)1.

Now think about doing the same thing with a three-dimensional mesh.
In this case, the top-level separators for an n × n × n mesh with N = n3

unknowns would involve n2 unknowns, and we would take O(n6) = O(N2)
time to do the elimination, and O(N4/3) fill. This relatively poor scaling
explains why sparse direct methods are attractive for solving 2D PDEs, but
are less popular for 3D problems.

1The explanation of why is not so hard, at least for regular 2D meshes, but it requires
more drawing than I feel like at the moment. The paper “Nested Dissection of a Regular
Finite Element Mesh” by Alan George (SIAM J. Numer. Anal. 10(2), April 1973) gives a
fairly readable explanation for the curious.

Bindel, Spring 2022 Numerical Analysis

G

A

B

C

D

E

F

S =



SAA SAC SAG

SBB SBC SBG

SCA SCB SCC SCG

SDD SDF SDG

SEE SEF SEG

SFD SFE SFF SFG

SGA SGB SGC SGD SGE SGF SGG


Figure 1: Nested dissection on a square mesh. We first cut the graph in half
with the red separator G, then further dissect the halves with the blue sepa-
rators C and F . Nodes in A, B, D, and F are only connected through these
separator nodes, which is reflected in the sparsity pattern of the adjacency
matrix S when it is ordered so that separators appear after the things they
separate.

Bindel, Spring 2022 Numerical Analysis

7 E pluribus unum
So far, we have described a few ideas about how to perform Gaussian elim-
ination for linear systems. But you might find yourself asking a reasonable
— if a bit lazy — question: “why bother?” After all, the Julia backslash
operator is a marvelous invention, and the simple expression

1 x = A\b

mostly “does the right thing” for a variety of types of matrices and factoriza-
tions, based partly on type information. If A is square and dense, this line
causes Julia to factor the matrix A using Gaussian elimination, then carry
out forward and backward substitution. If A is triangular, Julia does forward
or backward substitution. If A is a sparse matrix, Julia uses the UMFPACK
sparse LU package, including applying a reasonable column permutation. If
Julia can do all this automatically for you, why do you need to know the
details?

There’s a deeper answer to this question than the superficial “because
you’re taking a numerical methods class.” It even goes beyond needing to
understand things like when a sparse system is best solved by a direct method
vs. an iteration. One very important reason to understand the factorizations
that are being computed behind the scenes is that those factorizations can
be reused when you are solving more than one linear system at a go. And
solving more than one problem at a time, as it turns out, is often what we
want to do.

7.1 Multiple right hand sides
The simplest case of solving multiple problems is when the matrix is fixed,
but there are several right hand sides. That is, we want to solve

Ax(k) = b(k)

for k = 1, . . . ,m. In the simple case where all the right hand sides are
known in advance, we can still accomplish this by using the magic of Julia’s
backslash:

1 X = A\B;

But in some cases, we might not know the kth right hand side until we have
learned the answer to the k−1th question. For example, suppose we wanted

Bindel, Spring 2022 Numerical Analysis

to run the iterative refinement process

x(k+1) = x(k) + Â−1(b− Ax(k))

that was mentioned in a previous lecture. In Julia, if we had already com-
puted the factorization

1 F = lu(A)

we might run the iteration
1 x = F\b
2 for k = 1:niter
3 r = b-A*x
4 x += F\r
5 end

Note that we never form the inverse of A, explicitly or implicitly. Rather,
we apply A−1 to vectors through triangular solves involving the factors com-
puted through Gaussian elimination. Using only triangular solves is good for
performance (we take O(n2) time per solve after the original factorization,
rather than O(n3) time); and it is good for numerical stability.

The admonition against inverses sometimes causes a certain amount of
confusion, and it bears repeating: we want to only do permutations and
triangular solves applied to vectors. Specifically, in Julia, we have

1 # Probably best
2 F = lu(A)
3 x = F\b
4

5 # Also OK
6 L, U, p = lu(A)
7 x = U\(L\b[p])
8

9 # Generally bad
10 x = inv(A)*b; # Code that calls 'inv' deserves skepticism
11 x = U\L\b[p]; # Order of operations means we form U\L!

Bindel, Spring 2022 Numerical Analysis

8 Problems to ponder
1. An SPD matrix always can be written A = QΛQT where Λ is a diagonal

matrix with positive entries and Q is an orthogonal matrix. Show that
A−1 has a similar factorization, and therefore must also be SPD.

2. Argue that a principal submatrix of an SPD matrix must be SPD; for
example, if

A =

[
A11 AT

21

A21 A22

]
is SPD, then so are A11 and A22.

3. If A = LLT is SPD, argue that ∥x∥2A ≡ xTAx = ∥LTx∥2.

4. Suppose A is an SPD tridiagonal with diagonal entries α1, . . . , αn and
off-diagonal entries β1, . . . , βn−1. Write a Julia loop that converts the
vectors alpha and beta into corresponding coefficient vectors for a
bidiagonal Cholesky factor of A.

	Cholesky
	Tricky tridiagonals
	Consider sparsity
	General sparse direct methods
	Sparse matrices, graphs, and tree elimination
	Nested dissection
	E pluribus unum
	Multiple right hand sides

	Problems to ponder

