
Bindel, Spring 2022 Numerical Analysis

2022-02-14

1 Backward error in Gaussian elimination
Solving Ax = b in finite precision using Gaussian elimination followed by for-
ward and backward substitution yields a computed solution x̂ exactly satisfies

(1) (A+ δA)x̂ = b,

where |δA| ≲ 3nϵmach|L̂||Û |, assuming L̂ and Û are the computed L and U
factors.

I will now briefly sketch a part of the error analysis following Demmel’s
treatment (§2.4.2, Applied Numerical Linear Algebra). Here is the idea. Sup-
pose L̂ and Û are the computed L and U factors. We obtain ûjk by repeatedly
subtracting ljiuik from the original ajk, i.e.

ûjk = fl

(
ajk −

j−1∑
i=1

l̂jiûik

)
.

Regardless of the order of the sum, we get an error that looks like

ûjk = ajk(1 + δ0)−
j−1∑
i=1

l̂jiûik(1 + δi) +O(ϵ2mach)

where |δi| ≤ (j − 1)ϵmach. Turning this around gives

ajk =
1

1 + δ0

(
l̂jjûjk +

j−1∑
i=1

l̂jiûik(1 + δi)

)
+O(ϵ2mach)

= l̂jjûjk(1− δ0) +

j−1∑
i=1

l̂jiûik(1 + δi − δ0) +O(ϵ2mach)

=
(
L̂Û
)
jk
+ Ejk,

where

Ejk = −l̂jjûjkδ0 +

j−1∑
i=1

l̂jiûik(δi − δ0) +O(ϵ2mach)

Bindel, Spring 2022 Numerical Analysis

is bounded in magnitude by (j − 1)ϵmach(|L||U |)jk + O(ϵ2mach)
1. A similar

argument for the components of L̂ yields

A = L̂Û + E, where |E| ≤ nϵmach|L̂||Û |+O(ϵ2mach).

In addition to the backward error due to the computation of the LU
factors, there is also backward error in the forward and backward substitution
phases, which gives the overall bound (1).

2 Pivoting
The backward error analysis in the previous section is not completely satis-
factory, since |L||U | may be much larger than |A|, yielding a large backward
error overall. For example, consider the matrix

A =

[
δ 1
1 1

]
=

[
1 0
δ−1 1

] [
δ 1
0 1− δ−1

]
.

If 0 < δ ≪ 1 then ∥L∥∞∥U∥∞ ≈ δ−2, even though ∥A∥∞ ≈ 2. The problem
is that we ended up subtracting a huge multiple of the first row from the
second row because δ is close to zero — that is, the leading principle minor
is nearly singular. If δ were exactly zero, then the factorization would fall
apart even in exact arithmetic. The solution to the woes of singular and near
singular minors is pivoting; instead of solving a system with A, we re-order
the equations to get

Â =

[
1 1
δ 1

]
=

[
1 0
δ 1

] [
1 1
0 1− δ

]
.

Now the triangular factors for the re-ordered system matrix Â have very
modest norms, and so we are happy. If we think of the re-ordering as the
effect of a permutation matrix P , we can write

A =

[
δ 1
1 1

]
=

[
0 1
1 0

] [
1 0
δ 1

] [
1 1
0 1− δ

]
= P TLU.

1It’s obvious that Ejk is bounded in magnitude by 2(j − 1)ϵmach(|L||U |)jk +O(ϵ2mach).
We cut a factor of two if we go down to the level of looking at the individual rounding
errors during the dot product, because some of those errors cancel.

Bindel, Spring 2022 Numerical Analysis

Note that this is equivalent to writing PA = LU where P is another permu-
tation (which undoes the action of P T).

If we wish to control the multipliers, it’s natural to choose the permuta-
tion P so that each of the multipliers is at most one. This standard choice
leads to the following algorithm:

1 # Return L, U, p s.t. A[p,:] = L*U and the largest entry of L has magnitude 1
2 function my_pivoted_lu(A)
3

4 n = size(A)[1]
5 A = copy(A) # Make a local copy to overwrite
6 piv = zeros(Int, n) # Space for the pivot vector
7 piv[1:n] = 1:n
8

9 for j = 1:n-1
10

11 # Find ipiv >= j to maximize |A(i,j)|
12 ipiv = (j-1)+findmax(abs.(A[j:n,j]))[2]
13

14 # Swap row ipiv and row j and record the pivot row
15 A[ipiv,:], A[j,:] = A[j,:], A[ipiv,:]
16 piv[ipiv], piv[j] = piv[j], piv[ipiv]
17

18 # Compute multipliers and update trailing submatrix
19 A[j+1:n,j] /= A[j,j]
20 A[j+1:n,j+1:n] -= A[j+1:n,j]*A[j,j+1:n]'
21

22 end
23

24 UnitLowerTriangular(A), UpperTriangular(A), piv
25 end

By design, this algorithm produces an L factor in which all the elements
are bounded by one. But what about the U factor? There exist pathological
matrices for which the elements of U grow exponentially with n. But these
examples are extremely uncommon in practice, and so, in general, Gaussian
elimination with partial pivoting does indeed have a small backward error.
Of course, the pivot growth is something that we can monitor, so in the
unlikely event that it does look like things are blowing up, we can tell there
is a problem and try something different.

When problems do occur, it is more frequently the result of ill-conditioning
in the problem than of pivot growth during the factorization.

Bindel, Spring 2022 Numerical Analysis

3 Residuals revisited
The analysis in the previous section is potentially pessimistic, and does not
cover all possible contingencies. What if we use a solver other than Gaussian
elimination? Will we have to completely redo our error analysis? If we know
A and b, a reasonable way to evaluate an approximate solution x̂ independent
of how we got it is through the residual r = b−Ax̂. The approximate solution
satisfies

Ax̂ = b+ r,

so if we subtract of Ax = b, we have

x̂− x = A−1r.

We can use this to get the error estimate

∥x̂− x∥ = ∥A−1∥∥r∥;

or we can get a more refined error estimate based on ∥ |A−1| |r| ∥, as you will
work out in the next homework. But for a given x̂, we also actually have a
prayer of evaluating δx = A−1r with at least some accuracy. This will be the
idea behind iterative refinement.

4 Iterative refinement
If we have a solver for Â = A + E with E small, then we can use iterative
refinement to “clean up” the solution. The matrix Â could come from finite
precision Gaussian elimination of A, for example, or from some factorization
of a nearby “easier” matrix. To get the refinement iteration, we take the
equation

(2) Ax = Âx− Ex = b,

and think of x as the fixed point for an iteration

(3) Âxk+1 − Exk = b.

Note that this is the same as

Âxk+1 − (Â− A)xk = b,

Bindel, Spring 2022 Numerical Analysis

or
xk+1 = xk + Â−1(b− Axk).

Note that this latter form is the same as inexact Newton iteration on the
equation Axk − b = 0 with the approximate Jacobian Â.

If we subtract (2) from (3), we see

Â(xk+1 − x)− E(xk − x) = 0,

or
xk+1 − x = Â−1E(xk − x).

Taking norms, we have

∥xk+1 − x∥ ≤ ∥Â−1E∥∥xk − x∥.

Thus, if ∥Â−1E∥ < 1, we are guaranteed that xk → x as k → ∞. At least,
this is what happens in exact arithmetic. In practice, the residual is usually
computed with only finite precision, and so we would stop making progress
at some point. In general, iterative refinement is mainly used when either
the residual can be computed with extra precision or when the original solver
suffers from relatively large backward error.

	Backward error in Gaussian elimination
	Pivoting
	Residuals revisited
	Iterative refinement

