2022-02-09

1 Introduction

For the next few lectures, we will build tools to solve linear systems. Our main tool will be the factorization PA = LU, where P is a permutation, L is a unit lower triangular matrix, and U is an upper triangular matrix. As we will see, the Gaussian elimination algorithm learned in a first linear algebra class implicitly computes this decomposition; but by thinking about the decomposition explicitly, we find other ways to organize the computation.

2 Triangular solves

Suppose that we have computed a factorization PA = LU. How can we use this to solve a linear system of the form Ax = b? Permuting the rows of Aand b, we have

$$PAx = LUx = Pb,$$

and therefore

$$x = U^{-1}L^{-1}Pb.$$

So we can reduce the problem of finding x to two simpler problems:

- 1. Solve Ly = Pb
- 2. Solve Ux = y

We assume the matrix L is unit lower triangular (diagonal of all ones + lower triangular), and U is upper triangular, so we can solve linear systems with L and U involving forward and backward substitution.

As a concrete example, suppose

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}, \quad d = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}$$

To solve a linear system of the form Ly = d, we process each row in turn to find the value of the corresponding entry of y:

1. Row 1: $y_1 = d_1$

- 2. Row 2: $2y_1 + y_2 = d_2$, or $y_2 = d_2 2y_1$
- 3. Row 3: $3y_1 + 2y_2 + y_3 = d_3$, or $y_3 = d_3 3y_1 2y_2$

More generally, the *forward substitution* algorithm for solving unit lower triangular linear systems Ly = d looks like

Similarly, there is a *backward substitution* algorithm for solving upper triangular linear systems Ux = d

Each of these algorithms takes $O(n^2)$ time.

3 Gaussian elimination by example

Let's start our discussion of LU factorization by working through these ideas with a concrete example:

$$A = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 10 \end{bmatrix}.$$

To eliminate the subdiagonal entries a_{21} and a_{31} , we subtract twice the first row from the second row, and thrice the first row from the third row:

$$A^{(1)} = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 10 \end{bmatrix} - \begin{bmatrix} 0 \cdot 1 & 0 \cdot 4 & 0 \cdot 7 \\ 2 \cdot 1 & 2 \cdot 4 & 2 \cdot 7 \\ 3 \cdot 1 & 3 \cdot 4 & 3 \cdot 7 \end{bmatrix} = \begin{bmatrix} 1 & 4 & 7 \\ 0 & -3 & -6 \\ 0 & -6 & -11 \end{bmatrix}$$

That is, the step comes from a rank-1 update to the matrix:

$$A^{(1)} = A - \begin{bmatrix} 0\\2\\3 \end{bmatrix} \begin{bmatrix} 1 & 4 & 7 \end{bmatrix}.$$

Another way to think of this step is as a linear transformation $A^{(1)} = M_1 A$, where the rows of M_1 describe the multiples of rows of the original matrix that go into rows of the updated matrix:

$$M_1 = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix} = I - \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} = I - \tau_1 e_1^T.$$

Similarly, in the second step of the algorithm, we subtract twice the second row from the third row:

$$\begin{bmatrix} 1 & 4 & 7 \\ 0 & -3 & -6 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 4 & 7 \\ 0 & -3 & -6 \\ 0 & -6 & -11 \end{bmatrix} = \left(I - \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \right) A^{(1)}.$$

More compactly: $U = (I - \tau_2 e_2^T) A^{(1)}$.

Putting everything together, we have computed

$$U = (I - \tau_2 e_2^T)(I - \tau_1 e_1^T)A$$

Therefore,

$$A = (I - \tau_1 e_1^T)^{-1} (I - \tau_2 e_2^T)^{-1} U = LU.$$

Now, note that

$$(I - \tau_1 e_1^T)(I + \tau_1 e_1^T) = I - \tau_1 e_1^T + \tau_1 e_1^T - \tau_1 e_1^T \tau_1 e_1^T = I,$$

since $e_1^T \tau_1$ (the first entry of τ_1) is zero. Therefore,

$$(I - \tau_1 e_1^T)^{-1} = (I + \tau_1 e_1^T)$$

Similarly,

$$(I - \tau_2 e_2^T)^{-1} = (I + \tau_2 e_2^T)$$

Thus,

$$L = (I + \tau_1 e_1^T)(I + \tau_2 e_2^T).$$

Now, note that because τ_2 is only nonzero in the third element, $e_1^T \tau_2 = 0$; thus,

$$\begin{split} L &= (I + \tau_1 e_1^T)(I + \tau_2 e_2^T) \\ &= (I + \tau_1 e_1^T + \tau_2 e_2^T + \tau_1 (e_1^T \tau_2) e_2^T \\ &= I + \tau_1 e_1^T + \tau_2 e_2^T \\ &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 3 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix} \end{split}$$

The final factorization is

$$A = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 10 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 4 & 7 \\ 0 & -3 & -6 \\ 0 & 0 & 1 \end{bmatrix} = LU.$$

The subdiagonal elements of L are easy to read off: for i > j, l_{ij} is the multiple of row j that we subtract from row i during elimination. This means that it is easy to read off the subdiagonal entries of L during the elimination process.

4 Basic LU factorization

Let's generalize our previous algorithm and write a simple code for LU factorization. We will leave the issue of pivoting to a later discussion. We'll start with a purely loop-based implementation:

```
#
   # Overwrites a copy of A with L and U
2
   #
3
   function my_lu(A)
4
          A = copy(A)
6
          m, n = size(A)
          L = UnitLowerTriangular(A) # View on A for tracking multipliers
8
          U = UpperTriangular(A) # Upper triangular view on A
9
10
11
          for j = 1:n-1
                 for i = j+1:n
12
13
                         # Figure out multiple of row j to subtract from row i
14
```

1516

17

18

19 20

21

22 23

24

```
L[i,j] = A[i,j]/A[j,j]
                        # Subtract off the appropriate multiple
                        for k = j+1:n
                               A[i,k] -= L[i,j]*A[j,k]
                        end
                 end
          end
          L, U
25 end
```

We can write the two innermost loops more concisely in terms of a Gauss transformation $M_j = I - \tau_j e_j^T$, where τ_j is the vector of multipliers that appear when eliminating in column j:

```
#
 1
   # Overwrites a copy of A with L and U
2
   #
3
   function my_lu2(A)
4
5
           A = copy(A)
6
          m, n = size(A)
 7
          L = UnitLowerTriangular(A) # View on A for tracking multipliers
 8
           U = UpperTriangular(A) # Upper triangular view on A
9
10
           for j = 1:n-1
12
                  # Form vector of multipliers
13
                  L[j+1:n,j] ./= A[j,j]
14
15
                  # Apply Gauss transformation
16
                  A[j+1:n,j+1:n] -= L[j+1:n,j]*A[j,j+1:n]'
17
18
           end
19
20
          L, U
21
22 end
```

5 Problems to ponder

- 1. What is the complexity of the Gaussian elimination algorithm?
- 2. Describe how to find A^{-1} using Gaussian elimination. Compare the cost of solving a linear system by computing and multiplying by A^{-1} to the cost of doing Gaussian elimination and two triangular solves.
- 3. Consider a parallelipiped in \mathbb{R}^3 whose sides are given by the columns of a 3-by-3 matrix A. Interpret LU factorization geometrically, thinking of Gauss transformations as shearing operations. Using the fact that shear transformations preserve volume, give a simple expression for the volume of the parallelipiped.