
Bindel, Spring 2022 Numerical Analysis

2022-02-09

1 Introduction
For the next few lectures, we will build tools to solve linear systems. Our
main tool will be the factorization PA = LU , where P is a permutation,
L is a unit lower triangular matrix, and U is an upper triangular matrix.
As we will see, the Gaussian elimination algorithm learned in a first linear
algebra class implicitly computes this decomposition; but by thinking about
the decomposition explicitly, we find other ways to organize the computation.

2 Triangular solves
Suppose that we have computed a factorization PA = LU . How can we use
this to solve a linear system of the form Ax = b? Permuting the rows of A
and b, we have

PAx = LUx = Pb,

and therefore
x = U−1L−1Pb.

So we can reduce the problem of finding x to two simpler problems:

1. Solve Ly = Pb

2. Solve Ux = y

We assume the matrix L is unit lower triangular (diagonal of all ones + lower
triangular), and U is upper triangular, so we can solve linear systems with
L and U involving forward and backward substitution.

As a concrete example, suppose

L =

1 0 0
2 1 0
3 2 1

 , d =

11
3


To solve a linear system of the form Ly = d, we process each row in turn to
find the value of the corresponding entry of y:

1. Row 1: y1 = d1



Bindel, Spring 2022 Numerical Analysis

2. Row 2: 2y1 + y2 = d2, or y2 = d2 − 2y1

3. Row 3: 3y1 + 2y2 + y3 = d3, or y3 = d3 − 3y1 − 2y2

More generally, the forward substitution algorithm for solving unit lower tri-
angular linear systems Ly = d looks like

1 function forward_subst_unit(L, d)
2 y = copy(d)
3 n = length(d)
4 for i = 2:n
5 y[i] = d[i] - L[i,1:i-1]'*y[1:i-1]
6 end
7 y
8 end

Similarly, there is a backward substitution algorithm for solving upper trian-
gular linear systems Ux = d

1 function backward_subst(U, d)
2 x = copy(d)
3 n = length(d)
4 for i = n:-1:1
5 x[i] = (d[i] - U[i,i+1:n]'*x[i+1:n])/U[i,i]
6 end
7 x
8 end

Each of these algorithms takes O(n2) time.

3 Gaussian elimination by example
Let’s start our discussion of LU factorization by working through these ideas
with a concrete example:

A =

1 4 7
2 5 8
3 6 10

 .

To eliminate the subdiagonal entries a21 and a31, we subtract twice the first
row from the second row, and thrice the first row from the third row:

A(1) =

1 4 7
2 5 8
3 6 10

−

0 · 1 0 · 4 0 · 7
2 · 1 2 · 4 2 · 7
3 · 1 3 · 4 3 · 7

 =

1 4 7
0 −3 −6
0 −6 −11

 .



Bindel, Spring 2022 Numerical Analysis

That is, the step comes from a rank-1 update to the matrix:

A(1) = A−

02
3

 [
1 4 7

]
.

Another way to think of this step is as a linear transformation A(1) = M1A,
where the rows of M1 describe the multiples of rows of the original matrix
that go into rows of the updated matrix:

M1 =

 1 0 0
−2 1 0
−3 0 1

 = I −

02
3

 [
1 0 0

]
= I − τ1e

T
1 .

Similarly, in the second step of the algorithm, we subtract twice the second
row from the third row:1 4 7
0 −3 −6
0 0 1

 =

1 0 0
0 1 0
0 −2 1

1 4 7
0 −3 −6
0 −6 −11

 =

I −

00
2

 [
0 1 0

]A(1).

More compactly: U = (I − τ2e
T
2 )A

(1).
Putting everything together, we have computed

U = (I − τ2e
T
2 )(I − τ1e

T
1 )A.

Therefore,
A = (I − τ1e

T
1 )

−1(I − τ2e
T
2 )

−1U = LU.

Now, note that

(I − τ1e
T
1 )(I + τ1e

T
1 ) = I − τ1e

T
1 + τ1e

T
1 − τ1e

T
1 τ1e

T
1 = I,

since eT1 τ1 (the first entry of τ1) is zero. Therefore,

(I − τ1e
T
1 )

−1 = (I + τ1e
T
1 )

Similarly,
(I − τ2e

T
2 )

−1 = (I + τ2e
T
2 )

Thus,
L = (I + τ1e

T
1 )(I + τ2e

T
2 ).



Bindel, Spring 2022 Numerical Analysis

Now, note that because τ2 is only nonzero in the third element, eT1 τ2 = 0;
thus,

L = (I + τ1e
T
1 )(I + τ2e

T
2 )

= (I + τ1e
T
1 + τ2e

T
2 + τ1(e

T
1 τ2)e

T
2

= I + τ1e
T
1 + τ2e

T
2

=

1 0 0
0 1 0
0 0 1

+

0 0 0
2 0 0
3 0 0

+

0 0 0
0 0 0
0 2 0

 =

1 0 0
2 1 0
3 2 1

 .

The final factorization is

A =

1 4 7
2 5 8
3 6 10

 =

1 0 0
2 1 0
3 2 1

1 4 7
0 −3 −6
0 0 1

 = LU.

The subdiagonal elements of L are easy to read off: for i > j, lij is the
multiple of row j that we subtract from row i during elimination. This
means that it is easy to read off the subdiagonal entries of L during the
elimination process.

4 Basic LU factorization
Let’s generalize our previous algorithm and write a simple code for LU fac-
torization. We will leave the issue of pivoting to a later discussion. We’ll
start with a purely loop-based implementation:

1 #
2 # Overwrites a copy of A with L and U
3 #
4 function my_lu(A)
5

6 A = copy(A)
7 m, n = size(A)
8 L = UnitLowerTriangular(A) # View on A for tracking multipliers
9 U = UpperTriangular(A) # Upper triangular view on A

10

11 for j = 1:n-1
12 for i = j+1:n
13

14 # Figure out multiple of row j to subtract from row i



Bindel, Spring 2022 Numerical Analysis

15 L[i,j] = A[i,j]/A[j,j]
16

17 # Subtract off the appropriate multiple
18 for k = j+1:n
19 A[i,k] -= L[i,j]*A[j,k]
20 end
21 end
22 end
23

24 L, U
25 end

We can write the two innermost loops more concisely in terms of a Gauss
transformation Mj = I − τje

T
j , where τj is the vector of multipliers that

appear when eliminating in column j:
1 #
2 # Overwrites a copy of A with L and U
3 #
4 function my_lu2(A)
5

6 A = copy(A)
7 m, n = size(A)
8 L = UnitLowerTriangular(A) # View on A for tracking multipliers
9 U = UpperTriangular(A) # Upper triangular view on A

10

11 for j = 1:n-1
12

13 # Form vector of multipliers
14 L[j+1:n,j] ./= A[j,j]
15

16 # Apply Gauss transformation
17 A[j+1:n,j+1:n] -= L[j+1:n,j]*A[j,j+1:n]'
18

19 end
20

21 L, U
22 end



Bindel, Spring 2022 Numerical Analysis

5 Problems to ponder
1. What is the complexity of the Gaussian elimination algorithm?

2. Describe how to find A−1 using Gaussian elimination. Compare the
cost of solving a linear system by computing and multiplying by A−1

to the cost of doing Gaussian elimination and two triangular solves.

3. Consider a parallelipiped in R3 whose sides are given by the columns of
a 3-by-3 matrix A. Interpret LU factorization geometrically, thinking
of Gauss transformations as shearing operations. Using the fact that
shear transformations preserve volume, give a simple expression for tne
volume of the parallelipiped.


	Introduction
	Triangular solves
	Gaussian elimination by example
	Basic LU factorization
	Problems to ponder

