2022-02-09

1 Introduction

For the next few lectures, we will build tools to solve linear systems. Our main tool will be the factorization $P A=L U$, where P is a permutation, L is a unit lower triangular matrix, and U is an upper triangular matrix. As we will see, the Gaussian elimination algorithm learned in a first linear algebra class implicitly computes this decomposition; but by thinking about the decomposition explicitly, we find other ways to organize the computation.

2 Triangular solves

Suppose that we have computed a factorization $P A=L U$. How can we use this to solve a linear system of the form $A x=b$? Permuting the rows of A and b, we have

$$
P A x=L U x=P b,
$$

and therefore

$$
x=U^{-1} L^{-1} P b .
$$

So we can reduce the problem of finding x to two simpler problems:

1. Solve $L y=P b$
2. Solve $U x=y$

We assume the matrix L is unit lower triangular (diagonal of all ones + lower triangular), and U is upper triangular, so we can solve linear systems with L and U involving forward and backward substitution.

As a concrete example, suppose

$$
L=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 2 & 1
\end{array}\right], \quad d=\left[\begin{array}{l}
1 \\
1 \\
3
\end{array}\right]
$$

To solve a linear system of the form $L y=d$, we process each row in turn to find the value of the corresponding entry of y :

1. Row 1: $y_{1}=d_{1}$
2. Row 2: $2 y_{1}+y_{2}=d_{2}$, or $y_{2}=d_{2}-2 y_{1}$
3. Row 3: $3 y_{1}+2 y_{2}+y_{3}=d_{3}$, or $y_{3}=d_{3}-3 y_{1}-2 y_{2}$

More generally, the forward substitution algorithm for solving unit lower triangular linear systems $L y=d$ looks like

```
function forward_subst_unit(L, d)
    y = copy(d)
    n = length(d)
    for i = 2:n
            y[i] = d[i] - L[i,1:i-1]'*y[1:i-1]
    end
    y
end
```

Similarly, there is a backward substitution algorithm for solving upper triangular linear systems $U x=d$

```
function backward_subst(U, d)
    x = copy(d)
    n = length(d)
    for i = n:-1:1
        x[i] = (d[i] - U[i,i+1:n]'*x[i+1:n])/U[i,i]
        end
    x
end
```

Each of these algorithms takes $O\left(n^{2}\right)$ time.

3 Gaussian elimination by example

Let's start our discussion of $L U$ factorization by working through these ideas with a concrete example:

$$
A=\left[\begin{array}{ccc}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 10
\end{array}\right]
$$

To eliminate the subdiagonal entries a_{21} and a_{31}, we subtract twice the first row from the second row, and thrice the first row from the third row:

$$
A^{(1)}=\left[\begin{array}{ccc}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 10
\end{array}\right]-\left[\begin{array}{ccc}
0 \cdot 1 & 0 \cdot 4 & 0 \cdot 7 \\
2 \cdot 1 & 2 \cdot 4 & 2 \cdot 7 \\
3 \cdot 1 & 3 \cdot 4 & 3 \cdot 7
\end{array}\right]=\left[\begin{array}{ccc}
1 & 4 & 7 \\
0 & -3 & -6 \\
0 & -6 & -11
\end{array}\right] .
$$

That is, the step comes from a rank- 1 update to the matrix:

$$
A^{(1)}=A-\left[\begin{array}{l}
0 \\
2 \\
3
\end{array}\right]\left[\begin{array}{lll}
1 & 4 & 7
\end{array}\right] .
$$

Another way to think of this step is as a linear transformation $A^{(1)}=M_{1} A$, where the rows of M_{1} describe the multiples of rows of the original matrix that go into rows of the updated matrix:

$$
M_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
-3 & 0 & 1
\end{array}\right]=I-\left[\begin{array}{l}
0 \\
2 \\
3
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]=I-\tau_{1} e_{1}^{T}
$$

Similarly, in the second step of the algorithm, we subtract twice the second row from the third row:

$$
\left[\begin{array}{ccc}
1 & 4 & 7 \\
0 & -3 & -6 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -2 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 4 & 7 \\
0 & -3 & -6 \\
0 & -6 & -11
\end{array}\right]=\left(I-\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]\right) A^{(1)} .
$$

More compactly: $U=\left(I-\tau_{2} e_{2}^{T}\right) A^{(1)}$.
Putting everything together, we have computed

$$
U=\left(I-\tau_{2} e_{2}^{T}\right)\left(I-\tau_{1} e_{1}^{T}\right) A
$$

Therefore,

$$
A=\left(I-\tau_{1} e_{1}^{T}\right)^{-1}\left(I-\tau_{2} e_{2}^{T}\right)^{-1} U=L U
$$

Now, note that

$$
\left(I-\tau_{1} e_{1}^{T}\right)\left(I+\tau_{1} e_{1}^{T}\right)=I-\tau_{1} e_{1}^{T}+\tau_{1} e_{1}^{T}-\tau_{1} e_{1}^{T} \tau_{1} e_{1}^{T}=I,
$$

since $e_{1}^{T} \tau_{1}$ (the first entry of τ_{1}) is zero. Therefore,

$$
\left(I-\tau_{1} e_{1}^{T}\right)^{-1}=\left(I+\tau_{1} e_{1}^{T}\right)
$$

Similarly,

$$
\left(I-\tau_{2} e_{2}^{T}\right)^{-1}=\left(I+\tau_{2} e_{2}^{T}\right)
$$

Thus,

$$
L=\left(I+\tau_{1} e_{1}^{T}\right)\left(I+\tau_{2} e_{2}^{T}\right)
$$

Now, note that because τ_{2} is only nonzero in the third element, $e_{1}^{T} \tau_{2}=0$; thus,

$$
\begin{aligned}
L & =\left(I+\tau_{1} e_{1}^{T}\right)\left(I+\tau_{2} e_{2}^{T}\right) \\
& =\left(I+\tau_{1} e_{1}^{T}+\tau_{2} e_{2}^{T}+\tau_{1}\left(e_{1}^{T} \tau_{2}\right) e_{2}^{T}\right. \\
& =I+\tau_{1} e_{1}^{T}+\tau_{2} e_{2}^{T} \\
& =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+\left[\begin{array}{lll}
0 & 0 & 0 \\
2 & 0 & 0 \\
3 & 0 & 0
\end{array}\right]+\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 2 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 2 & 1
\end{array}\right] .
\end{aligned}
$$

The final factorization is

$$
A=\left[\begin{array}{ccc}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 10
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 2 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 4 & 7 \\
0 & -3 & -6 \\
0 & 0 & 1
\end{array}\right]=L U .
$$

The subdiagonal elements of L are easy to read off: for $i>j, l_{i j}$ is the multiple of row j that we subtract from row i during elimination. This means that it is easy to read off the subdiagonal entries of L during the elimination process.

4 Basic LU factorization

Let's generalize our previous algorithm and write a simple code for $L U$ factorization. We will leave the issue of pivoting to a later discussion. We'll start with a purely loop-based implementation:

```
#
# Overwrites a copy of A with L and U
#
function my_lu(A)
    A = copy(A)
    m, n = size(A)
    L = UnitLowerTriangular(A) # View on A for tracking multipliers
    U = UpperTriangular(A) # Upper triangular view on A
    for j = 1:n-1
        for i = j+1:n
            # Figure out multiple of row j to subtract from row i
```

```
            L[i,j] = A[i,j]/A[j,j]
                # Subtract off the appropriate multiple
                for k = j+1:n
                A[i,k] -= L[i,j]*A[j,k]
                end
        end
    end
    L, U
end
```

We can write the two innermost loops more concisely in terms of a Gauss transformation $M_{j}=I-\tau_{j} e_{j}^{T}$, where τ_{j} is the vector of multipliers that appear when eliminating in column j :

```
#
# Overwrites a copy of A with L and U
#
function my_lu2(A)
    A = copy(A)
    m, n = size(A)
    L = UnitLowerTriangular(A) # View on A for tracking multipliers
    U = UpperTriangular(A) # Upper triangular view on A
    for j = 1:n-1
        # Form vector of multipliers
        L[j+1:n,j] ./= A[j,j]
        # Apply Gauss transformation
        A[j+1:n,j+1:n] -= L[j+1:n,j]*A[j,j+1:n]'
    end
    L, U
end
```


5 Problems to ponder

1. What is the complexity of the Gaussian elimination algorithm?
2. Describe how to find A^{-1} using Gaussian elimination. Compare the cost of solving a linear system by computing and multiplying by A^{-1} to the cost of doing Gaussian elimination and two triangular solves.
3. Consider a parallelipiped in \mathbb{R}^{3} whose sides are given by the columns of a 3-by-3 matrix A. Interpret $L U$ factorization geometrically, thinking of Gauss transformations as shearing operations. Using the fact that shear transformations preserve volume, give a simple expression for tne volume of the parallelipiped.
