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1 Matrices and mappings

A matrix represents a mapping between two vector spaces. That is, if L :
Y — W is a linear map, then the associated matrix A with respect to bases
V and W satisfies A = W™LV. The same linear mapping corresponds
to different matrices depending on the choices of basis. But matrices can
reresent several other types of mappings as well. Over the course of this
class, we will see several interpretations of matrices:

« Linear maps. A map L:V — W is linear if L(x +y) = Lz + Ly and
L(ax) = aLz. The corresponding matrix is A = WLV

« Linear operators. A linear map from a space to itself (L : V — V) is
a linear operator. The corresponding (square) matrix is A = V1LV,

 Bilinear forms. A map a: V x W — R (or C for complex spaces) is
bilinear if it is linear in both slots: a(au + v,w) = aa(u,w) + a(v, w)
and a(v, au + w) = aa(v,u) + a(v,w). The corresponding matrix has
elements A;; = a(v;, w;); if v = Ve and w = Wd then a(v,w) = d* Ac.

We call a bilinear form on V x V symmetric if a(v,w) = a(w,v); in
this case, the corresponding matrix A is also symmetric (A = AT).
A symmetric form and the corresponding matrix are called positive
semi-definite if a(v,v) > 0 for all v. The form and matrix are positive
definite if a(v,v) > 0 for any v # 0.

A skew-symmetric matrix (A = —AT) corresponds to a skew-symmetric
or anti-symmetric bilinear form, i.e. a(v,w) = —a(w,v).

» Sesquilinear forms. A map a : V x W — C (where V and W
are complex vector spaces) is sesquilinear if it is linear in the first
slot and the conjugate is linear in the second slot: a(au + v,w) =
aa(u, w)+a(v, w) and a(v, cu+w) = aa(v,u)+a(v, w). The matrix has
elements A;; = a(v;, w;); if v = V¢ and w = Wd then a(v, w) = d*Ac.

We call a sesquilinear form on V x V Hermitian if a(v, w) = a(w,v); in
this case, the corresponding matrix A is also Hermitian (A = A*). A



Bindel, Spring 2022 Numerical Analysis

Hermitian form and the corresponding matrix are called positive semi-
definite if a(v,v) > 0 for all v. The form and matrix are positive definite
if a(v,v) > 0 for any v # 0.

A skew-Hermitian matrix (A = —A*) corresponds to a skew-Hermitian
or anti-Hermitian bilinear form, i.e. a(v,w) = —a(w,v).

e Quadratic forms. A quadratic form ¢ : V — R (or C) is a homo-
geneous quadratic function on V, i.e. ¢(av) = |a|?*¢(v) for which the
map b(v,w) = ¢(v+ w) — p(v) — ¢(w) is bilinear. Any quadratic form
on a finite-dimensional space can be represented as ¢* Ac where c is the
coefficient vector for some Hermitian matrix A. The formula for the
elements of A given ¢ is left as an exercise.

We care about linear maps and linear operators almost everywhere, and most
students come out of a first linear algebra class with some notion that these
are important. But apart from very standard examples (inner products and
norms), many students have only a vague notion of what a bilinear form,
sesquilinear form, or quadratic form might be. Bilinear forms and sesquilin-
ear forms show up when we discuss large-scale solvers based on projection
methods. Quadratic forms are important in optimization, physics (where
they often represent energy), and statistics (e.g. for understanding variance
and covariance).

1.1 Matrix norms

The space of matrices forms a vector space; and, as with other vector spaces,
it makes sense to talk about norms. In particular, we frequently want norms
that are consistent with vector norms on the range and domain spaces; that
is, for any w and v, we want

w=Av = wl < [|A]]v].

One “obvious” consistent norm is the Frobenius norm,
‘AHF E azy

Even more useful are induced norms (or operator norms)

Av
Al = ” M4 _ i v
H |-
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The induced norms corresponding to the vector 1-norm and oo-norm are

||Al|; = max E la;;]  (max column sum)
J -
(2

|A]|l e = m?XZ la;;| (max row sum)
J

The norm induced by the vector Euclidean norm (variously called the matrix
2-norm or the spectral norm) is more complicated.

The Frobenius norm and the matrix 2-norm are both orthogonally invari-
ant (or unitarily invariant in a complex vector space. That is, if ) is a square
matrix with Q* = Q! (an orthogonal or unitary matrix) of the appropriate
dimensions

1QAllr = [[AllF, [AQIF = [IAllF,
QA2 = [|A][2, [AQ]l2 = [|A][2-

This property will turn out to be frequently useful throughout the course.

1.2 Decompositions and canonical forms

Matriz decompositions (also known as matriz factorizations) are central to
numerical linear algebra. We will get to know six such factorizations well:

« PA = LU (a.k.a. Gaussian elimination). Here L is unit lower triangular
(triangular with 1 along the main diagonal), U is upper triangular, and
P is a permutation matrix.

« A = LL* (a.k.a. Cholesky factorization). Here A is Hermitian and
positive definite, and L is a lower triangular matrix.

« A=QR (ak.a. QR decomposition). Here () has orthonormal columns
and R is upper triangular. If we think of the columns of A as a basis,
QR decomposition corresponds to the Gram-Schmidt orthogonalization
process you have likely seen in the past (though we rarely compute with
Gram-Schmidt).

o« A=UXV" (a.k.a. the singular value decomposition or SVD). Here U
and V' have orthonormal columns and Y is diagonal with non-negative
entries.
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o« A= QAQ* (ak.a. symmetric eigendecomposition). Here A is Hermi-
tian (symmetric in the real case), @ is orthogonal or unitary, and A is
a diagonal matrix with real numbers on the diagonal.

e A = QTQ* (ak.a. Schur form). Here A is a square matrix, @ is
orthogonal or unitary, and T is upper triangular (or nearly so).

The last three of these decompositions correspond to canonical forms for
abstract operators. That is, we can view these decompositions as finding
bases in which the matrix representation of some operator or form is partic-
ularly simple. More particularly:

e SVD: For any linear mapping L : V — W, there are orthonormal bases
for the two spaces such that the corresponding matrix is diagonal

o Symmetric eigendecomposition: For any Hermitian sesquilinear
map on an inner product space, there is an orthonormal basis for the
space such that the matrix representation is diagonal.

e Schur form: For any linear operator L : V — V), there is an orthonor-
mal basis for the space such that the matrix representation is upper
triangular. Equivalently, if {u;,...,u,} is the basis in question, then
sp({u;}¥_,) is an invariant subspace for each 1 <k < n.

The Schur form turns out to be better for numerical work than the Jordan
canonical form that you should have seen in an earlier class. We will discuss
this in more detail when we discuss eigenvalue problems.

1.3 The SVD and the 2-norm

The singular value decomposition is useful for a variety of reasons; we close
off the lecture by showing one such use.

Suppose A = UXV™* is the singular value decomposition of some matrix.
Using orthogonal invariance (unitary invariance) of the 2-norm, we have

[All2 = U AV ]|z = [ %],

i.e.
2
.04V
1A]l» = max Z#
lolz=1 v
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That is, the spectral norm is the largest weighted average of the singular
values, which is the same as just the largest singular value.

The small singular values also have a meaning. If A is a square, invertible
matrix then

AT 2 = VST U]l = (1212,

i.e. [J[A7Y; is the inverse of the smallest singular value of A.

The smallest singular value of a nonsingular matrix A can also be inter-
preted as the “distance to singularity”: if o, is the smallest singular value of
A, then there is a matrix F such that ||E||s = 0, and A + E is singular; and
there is no such matrix with smaller norm.

These facts about the singular value decomposition are worth ponder-
ing, as they will be particularly useful in the next lecture when we ponder
sensitivity and conditioning.

2 Norms revisited

Earlier, we discussed norms, including induced norms: if A maps between
two normed vector spaces V and W, the induced norm on A is

Av
1Allyon =sup”||ﬂ — sup [ Au]hy.
vto lvlly l[vfly=1

When V is finite-dimensional (as it always is in this class), the unit ball
{v eV :|v| =1} is compact, and ||Av|| is a continuous function of v, so
the supremum is actually attained. Induced norms have a number of nice
properties, not the least of which are the submultiplicative properties

[ Av[| < [ A[[[]
[AB]| < |l BI|

The first property (|| Av|| < ||A||||v]) is clear from the definition of the vector
norm. The second property is almost as easy to prove:

1AB|| = max [|ABv]| < max [|A[[| Bvll = [ Al[| B

[[ol=1

The matrix norms induced when V and W are supplied with a 1-norm, 2-
norm, or oo-norm are simply called the matrix 1-norm, 2-norm, and oo-norm.
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The matrix 1-norm and oo-norm are given by
IA]l; = max > |a|
T
[ Ao = m?XZ |aij]-
J

These norms are nice because they are easy to compute; the two norm is nice
for other reasons, but is not easy to compute.

2.1 Norms and Neumann series

We will do a great deal of operator norm manipulation this semester, almost
all of which boils down to repeated use of the triangle inequality and the
submultiplicative property. For now, we illustrate the point by a simple,
useful example: the matrix version of the geometric series.
Suppose F' is a square matrix such that ||F'|| < 1 in some operator norm,
and consider the power series
n
>
j=0

Note that ||F?|| < ||F|]? via the submultiplicative property of induced oper-
ator norms. By the triangle inequality, the partial sums satisfy

(I-F)> F=I-F""
=0

Hence, we have that

n

(1= F)Y F/ =TI < |F|""" = 0 as n — oo,

Jj=0

i.e. I — F'is invertible and the inverse is given by the convergent power series
(the geometric series or Neumann series)

(I-F)"'= iFj.
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By applying submultiplicativity and triangle inequality to the partial sums,
we also find that

=B <SR = —
2 T[]

Note as a consequence of the above that if |A™'E|| < 1 then

1A~

-1 — —1 -1 4—-1 < .
A+ £ = 0+ A7 B A7 < s

That is, the Neumann series gives us a sense of how a small perturbation to
A can change the norm of A~

3 Notions of error

The art of numerics is finding an approximation with a fast algorithm, a
form that is easy to analyze, and an error bound. Given a task, we want
to engineer an approximation that is good enough, and that composes well
with other approximations. To make these goals precise, we need to define
types of errors and error propagation, and some associated notation — which
is the point of this lecture.

3.1 Absolute and relative error

Suppose T is an approximation to . The absolute error is
Cabs = |T — x|

Absolute error has the same dimensions as x, and can be misleading without
some context. An error of one meter per second is dramatic if z is my walking
pace; if z is the speed of light, it is a very small error.

The relative error is a measure with a more natural sense of scale:

d

€rel =
]

Relative error is familiar in everyday life: when someone talks about an error
of a few percent, or says that a given measurement is good to three significant
figures, she is describing a relative error.
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We sometimes estimate the relative error in approximating = by & using
the relative error in approximating & by x:

d
||

As long as é,q < 1, a little algebra gives that

€rel =

G <Ol

1+ é.q 1— éra

If we know €, is much less than one, then it is a good estimate for e, . If

érel 18 not much less than one, we know that Z is a poor approximation to x.

Either way, é,. is often just as useful as e, and may be easier to estimate.
Relative error makes no sense for = 0, and may be too pessimistic when

the property of x we care about is “small enough.” A natural intermediate

between absolute and relative errors is the mixed error
|7 — x|
€mixed —
|z| + 7

where 7 is some natural scale factor associated with z.

3.2 Errors beyond scalars

Absolute and relative error make sense for vectors as well as scalars. If || - ||
is a vector norm and Z and z are vectors, then the (normwise) absolute and
relative errors are

eabs = Hi. - xH) erel = ||x||

We might also consider the componentwise absolute or relative errors

_ |5 - |$z - $z|
eabs,i - |$z - xz’ erel,i -
|i]
The two concepts are related: the maximum componentwise relative error
can be computed as a normwise error in a norm defined in terms of the
solution vector:

max eg s = || — 2]
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where [||z]| = | diag(z)~'z|]. More generally, absolute error makes sense
whenever we can measure distances between the truth and the approxima-
tion; and relative error makes sense whenever we can additionally measure
the size of the truth. However, there are often many possible notions of
distance and size; and different ways to measure give different notions of
absolute and relative error. In practice, this deserves some care.

3.3 Forward and backward error and conditioning

We often approximate a function f by another function f . For a particular
x, the forward (absolute) error is

/(@) = f()]-

In words, forward error is the function output. Sometimes, though, we can
think of a slightly wrong input:

~

f(z) = f(2).

In this case, |x — | is called the backward error. An algorithm that always
has small backward error is backward stable.

A condition number a tight constant relating relative output error to
relative input error. For example, for the problem of evaluating a sufficiently
nice function f(z) where x is the input and & = x + h is a perturbed input
(relative error |h|/|z|), the condition number [f(x)] is the smallest constant

el that P+ h) - 7)) 1
O < g+ o)

]
If f is differentiable, the condition number is

D) — f@UY @] _ 7@l
@)= e B = 2l O

If f is Lipschitz in a neighborhood of = (locally Lipschitz), then

(] = M@l
@l ==

where My is the smallest constant such that | f(z+h)—f(z)| < My|h|4+o(|h]).
When the problem has no linear bound on the output error relative to the
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input error, we sat the problem has an infinite condition number. An example
is 213 at x = 0.

A problem with a small condition number is called well-conditioned; a
problem with a large condition number is ill-conditioned. A backward stable
algorithm applied to a well-conditioned problem has a small forward error.

4 Perturbing matrix problems

To make the previous discussion concrete, suppose I want y = Az, but
because of a small error in A (due to measurement errors or roundoff effects),
[ instead compute g = (A + E)x where E is “small” The expression for the
absolute error is trivial:

19—yl = | Ex|.
But I usually care more about the relative error.
g~ ol _ |l
Iyl Iyl

If we assume that A is invertible and that we are using consistent norms
(which we will usually assume), then

1Ez]| = [EA™ I < [IE[IA™ Iy,

which gives us

19 =yl p g4y IEL _ o ay IE
< [[A[IA™ T = # (A=
1yl 1Al Al

That is, the relative error in the output is the relative error in the input mul-
tiplied by the condition number x(A) = || AJ|||[A™!||. Technically, this is the
condition number for the problem of matrix multiplication (or solving linear
systems, as we will see) with respect to a particular (consistent) norm; dif-
ferent problems have different condition numbers. Nonetheless, it is common
to call this “the” condition number of A.

5 Dimensions and scaling

The first step in analyzing many application problems is nondimensional-
ization: combining constants in the problem to obtain a small number of



Bindel, Spring 2022 Numerical Analysis

dimensionless constants. Examples include the aspect ratio of a rectangle,
the Reynolds number in fluid mechanics!, and so forth. There are three big
reasons to nondimensionalize:

o Typically, the physics of a problem only really depends on dimension-
less constants, of which there may be fewer than the number of dimen-
sional constants. This is important for parameter studies, for example.

o For multi-dimensional problems in which the unknowns have different
units, it is hard to judge an approximation error as “small” or “large,”
even with a (normwise) relative error estimate. But one can usually
tell what is large or small in a non-dimensionalized problem.

« Many physical problems have dimensionless parameters much less than
one or much greater than one, and we can approximate the physics in
these limits. Often when dimensionless constants are huge or tiny and
asymptotic approximations work well, naive numerical methods work
work poorly. Hence, nondimensionalization helps us choose how to
analyze our problems — and a purely numerical approach may be silly.

6 Problems to ponder

1. Show that as long as é,q < 1,

€rel <e 1< €rel

~ > Crel >
1—i_erel

— €rel

2. Show that A + F is invertible if A is invertible and | E|| < 1/||A7!|| in
some operator norm.

3. In this problem, we will walk through an argument about the bound
on the relative error in approximating the relative error in solving a
perturbed linear system: that is, how well does §j = (A+ E)~1b approx-
imate y = A~1b in a relative error sense? We will assume throughout
that ||E|| < e and k(A)e < 1.

(a) Show that § = (I + A™'E)y.

1Or any of a dozen other named numbers in fluid mechanics. Fluid mechanics is a field
that appreciates the power of dimensional analysis
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(b) Using Neumann series bounds, argue that

|45

I+A'E)— [ < ———1
I+ A7 E) ~ 1 < e

(¢) Conclude that
5 vl s
Iyl = 1= r(A)e
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