
Bindel, Spring 2017 Numerical Analysis (CS 4220)

Notes for 2017-05-05

1 Lay of the Land

In the landscape of continuous optimization problems, there are two axes in
which things can be hard. In the first axis, we have the global structure of
the problem:

• Easiest: Quadratic functions.

• Harder: General convex functions.

• Harder: Nonconvex functions with special structure.

• Harder: Nonconvex functions with some smoothness.

• Hardest: Nonconvex functions with wild variations.

Along the second axis, we have the local structure that is readily available:

• Easy: Hessians and gradients are available.

• Harder: Gradients are available, but Hessians are not (or are too costly
to use).

• Hardest: Gradients are not available; only function evaluations.

For the past two weeks, we have discussed the related problems of op-
timization and nonlinear equation solving. Our standard method (Newton
iteration) applies to both problems. In the categorization above, this is
“easy” in terms of assuming we know lots of local structure: gradients and
Hessians. Newton converges quickly from good guesses, and can be effec-
tively globalized, making it useful not only for convex problems but also for
harder non-convex problems (given a good initial guess). But Newton uses
many derivatives, and factorizations that may be expensive. We have dis-
cussed a few methods (e.g. Broyden) that require fewer derivatives, but we
can go further.

Today we discuss optimization in one of the hard cases. For this class, we
will not deal with the case of problems with very hard global structure, other
than to say that this is a land where heuristic methods (simulated annealing,



Bindel, Spring 2017 Numerical Analysis (CS 4220)

genetic algorithms, and company) may make sense. But there are some useful
methods that are available for problems where the global structure is not so
hard as to demand heuristics, but the problems are hard in that they are
“black box” we are limited in what we can compute to looking at function
evaluations.

Before describing some methods, I make a plea that you consider these
only after having thoughtfully weighed the pros and cons of gradient-based
methods. If the calculus involved in computing the derivatives is too painful,
consider a computer algebra system, or look into a tool for automatic dif-
ferentiation of computer programs. Alternately, consider whether there are
numerical estimates of the gradient (via finite differences) that can be com-
puted more quickly than one might expect by taking advantage of the struc-
ture of how the function depends on variables. But if you really have to work
with a black box code, or if the pain of computing derivatives (even with a
tool) is too great, a gradient-free approach may be for you.

2 Model-based methods

The idea behind Newton’s method is to successively minimize a quadratic
model of the function behavior based on a second-order Taylor expansion
about the most recent guess, i.e. xk+1 = xk + p where

argminp φ(x) + φ′(x)p+
1

2
pTH(x)p.

In some Newton-like methods, we use a more approximate model, usually
replacing the Hessian with something simpler to compute and factor. In
simple gradient-descent methods, we might fall all the way back to a linear
model, though in that case we cannot minimize the model globally – we need
some other way of controlling step lengths. We can also explicitly incorporate
our understanding of the quality of the model by specifying a constraint that
keeps us from moving outside a “trust region” where we trust the model to
be useful.

In derivative-free methods, we will keep the basic “minimize the model”
approach, but we will use models based on interpolation (or regression) in
place of the Taylor expansions of the Newton approach. There are several
variants.



Bindel, Spring 2017 Numerical Analysis (CS 4220)

2.1 Finite difference derivatives

Perhaps the simplest gradient-free approach (though not necessarily the most
efficient) takes some existing gradient-based approach and replaces gradients
with finite difference approximations. There are a two difficulties with this
approach:

• If φ : Rn → R, then computing the ∇φ(x) by finite differences involves
at least n+ 1 function evaluations. Thus the typical cost per step ends
up being n + 1 function evaluations (or more), where methods that
are more explicitly designed to live off samples might only use a single
function evaluation per step.

• The finite difference approximations depends on a step size h, and
their accuracy is a complex function of h. For h too small, the error
is dominated by cancellation, revealing roundoff error in the numerical
function evaluations. For h large, the error depends on both the step
size and the local smoothness of the function.

2.2 Linear models

A method based on finite difference approximations of gradients might use
n + 1 function evaluations per step: one to compute a value at some new
point, and n more in a local neighborhood to compute values to estimate
derivatives. An alternative is to come up with an approximate linear model
for the function using n+ 1 function evaluations that may include some “far
away” function evaluations from previous steps.

We insist that the n+ 1 evaluations form a simplex with nonzero volume;
that is, to compute from evaluations at points x0, . . . , xn, we want {xj−x0}nj=1

to be linearly independent vectors. In that case, we can build a model x 7→
bTx + c where b ∈ Rn and c ∈ R are chosen so that the model interpolates
the function values. Then, based on this model, we choose a new point.

There are many methods that implicitly use linear approximations based
on interpolation over a simplex. One that uses the concept rather explicitly
is Powell’s COBYLA (Constrained Optimization BY Linear Approximation),
which combines a simplex-based linear approximation with a trust region.



Bindel, Spring 2017 Numerical Analysis (CS 4220)

2.3 Quadratic models

One can build quadratic models of a function from only function values,
but to fit a quadratic model in n-dimensional space, we usually need (n +
2)(n + 1)/2 function evaluations – one for each of the n(n + 1)/2 distinct
second partials, and n + 1 for the linear part. Hence, purely function-based
methods that use quadratic models tend to be limited to low-dimensional
spaces. However, there are exceptions. The NEWUOA method (again by
Powell) uses 2n+1 samples to build a quadratic model of the function with a
diagonal matrix at second order, and then updates that matrix on successive
steps in a Broyden-like way.

2.4 Response surfaces

Polynomial approximations are useful, but they are far from the only meth-
ods for approximating objective functions in high-dimensional spaces. One
popular approach1 is to use radial basis functions; for example, we might
write a model

s(x) =
m∑
j=1

cjφ(‖x− xj‖)

where the coefficients cj are chosen to satisfy m interpolation conditions at
points x1, . . . , xm. Another option is to use a Gaussian process model to
predict how the objective function behaves between objectives; this is used,
for example, in an optimizer called EGO. There are a variety of other surfaces
one might consider, though.

In addition to fitting a surface that interpolates known function values,
there are also methods that use regression to fit some set of known function
values in a least squares sense. This is particularly useful when the function
values have noise.

3 Pattern search and simplex

So far, the methods we have described are explicit in building a model that
approximates the function. However, there are also methods that use a

1At least, it is popular that I’ve gotten pulled into working on it. Your TA does, too!
See https://github.com/dme65/pySOT.

https://github.com/dme65/pySOT


Bindel, Spring 2017 Numerical Analysis (CS 4220)

systematic search procedure in which a model does not explicitly appear.
These sometimes go under the heading of “direct search” methods.

3.1 Nelder-Mead

The Nelder-Mead algorithm is one of the most popular derivative-free opti-
mizers around. For example, this is the default algorithm used in MATLAB’s
fminsearch. As with methods like COBYLA, the Nelder-Mead approach
maintains a simplex of n + 1 function evaluation points that it updates at
each step. In Nelder-Mead, one updates the simplex based on function values
at the simplex corners, the centroid, and one other point; or one contracts
the simplex.

Visualizations of Nelder-Mead are often quite striking: the simplex ap-
pears to crawl downhill like some sort of mathematical amoeba. But there
are examples of functions where Nelder-Mead is not guaranteed to converge
to a minimum at all.

3.2 Hook-Jeeves and successors

The basic idea of pattern search methods is to test points in a pattern around
the current “best” point. For example, in the Hook-Jeeves approach (one
of the earliest pattern search methods), one would at each move evaluate
φ(x(k) ± ∆ej) for each of the n coordinate directions ej. If one of the new
points is better than x(k), it becomes x(k+1) (and we may increase ∆ if we
already took a step in this direction to get from x(k−1) to x(k). Of x(k) is better
than any surrounding point, we decrease ∆ and try again. More generally,
we would evaluate φ(x(k) + d) for d ∈ G(∆), a generating set of directions
with some scale factor ∆.

4 Summarizing thoughts

Direct search methods have been with us for more than half a century: the
original Hook-Jeeves paper was from 1961, and the Nelder-Mead paper goes
back to 1965. These methods are attractive in that they require only the abil-
ity to compute objective function values, and can be used with “black box”
codes – or even with evaluations based on running a physical experiment!



Bindel, Spring 2017 Numerical Analysis (CS 4220)

Computing derivatives requires some effort, even when automatic differen-
tiation and related tools are available, and so gradient-free approaches may
also be attractive because of ease-of-use.

Gradient-free methods often work well in practice for solving optimization
problems with modest accuracy requirements. This is true even of methods
like Nelder-Mead, for which there are examples of very nice functions (smooth
and convex) for which the method is guaranteed to mis-converge. But though
the theoretical foundations for these methods have gradually improved with
time, the theory for gradient-free methods is much less clear-cut than the
theory for gradient-based methods. Gradient-based methods also have a
clear advantage at higher accuracy requirements.

Gradient-free methods do not free a user from the burden of finding a
good initial guess. Methods like Nelder-Mead and pattern search will, at
best, converge to local minima. Methods such as simulated annealing may
have better luck in finding global minima, but it is still a hard problem in
general. Gradient-free methods may also have difficulty with functions that
are discontinuous, or that have large Lipschitz constants.

In many areas in numerics, an ounce of analysis pays for a pound of
computation. If the computation is to be done repeatedly, or must be done to
high accuracy, then it is worthwhile to craft an approach that takes advantage
of specific problem structure. On the other hand, sometimes one just wants
to do a cheap exploratory computation to get started, and the effort of using
a specialized approach may not be warranted. An overview of the options
that are available is useful for approaching these tradeoffs intelligently.

5 References

Our textbook does not have much discussion of gradient-free optimization.
For further reading at the same level as these notes (though by a much
more knowledgable authority), I recommend “A view of algorithms for op-
timization without derivatives” by M. J. D. Powell (2007). There is also a
beautiful survey of direct search methods by Kolda, Lewis, and Torczon from
2003 (“Optimization by direct search: new perspectives no some classical and
modern methods,” SIAM Review, vol 45, pp. 385–482). For more detail, try
Introduction to Derivative-Free Optimization by Conn, Scheinberg, and Vi-
cente (SIAM, 2009). The Cornell library subscribes to SIAM’s eBook service,
so if you are on campus, you can get to the electronic version of this book.


	Lay of the Land
	Model-based methods
	Finite difference derivatives
	Linear models
	Quadratic models
	Response surfaces

	Pattern search and simplex
	Nelder-Mead
	Hook-Jeeves and successors

	Summarizing thoughts
	References

