
Bindel, Spring 2017 Numerical Analysis (CS 4220)

Notes for 2017-05-03

1 Variable Projection

The case of a linear model with a non-quadratic loss function leads to one
special class of nonlinear least squares. Another common special case is when
a model depends linearly on some parameters and nonlinearly on others. For
these problems, variable projection is the general strategy of eliminating the
variables on which a least squares problem depends linearly.

As an example, consider the problem

minimize φ(x, y) =
1

2
‖A(y)x− b‖2

where A : Rp → Rm×n depends (possibly nonlinearly) on y, but the x vari-
ables only enter the problem linearly. The variable projection approach in-
volves eliminating the x variables from the equation:

minimize φ(x(y), y) =
1

2
‖r(y)‖2, r(y) = A(y)x(y)− b, x(y) = A(y)†b.

The variation of ‖r‖2/2 is rT δr where

δr = A(δx) + (δA)x;

and because AT r = 0 (normal equations), we have

rT δr = rT (δA)x.

One may undertake second derivatives as an exercise in algebraic fortitude;
alternately, we may apply BFGS or similar methods. Either way, we are now
left with a smaller optimization problem involving the y variables alone.

2 Approximate iteration

At this point, we have considered several different methods for solving op-
timization problems arising from regression. The methods involved using
different special structures (e.g. nonlinear least squares structure) and var-
ious simplifying approximations (e.g. Gauss-Newton and IRLS rather than



Bindel, Spring 2017 Numerical Analysis (CS 4220)

Newton). But in each case, we assumed that we were willing to look over
the entire data set on which we were performing regression. But as data
sets grow larger and larger, this may no longer be feasible. We conclude
our discussion of regression problems with a high-level discussion of how to
accelerate regression problems over large data sets. We consider three cases.

2.1 Sampling

In the worst case, we are unwilling to touch the full data set even once, but
we are willing to compute over samples of the data. In this case, a sensible
tactic might be:

1. Draw a (representative) sample from the data.

2. Do regression over the sample.

3. Repeat.

It is not always necessary to repeatedly compute over different samples, but
it can be a useful way to get a sense of how accurate we believe our computed
regression parameters to be. Of course, there is a lot more to sampling than
this! But this is well covered in the statistics literature.

2.2 Noisy gradients

We should not sneer at simple one-shot sampling, but it has some limitations.
An attractive alternative to the sample-and-regress strategy is to apply an
approach like stochastic gradient descent, where at each step we compute an
estimator of the gradient (each time based on a different sample) and step
downhill in that direction. These methods are limited by two different factors:
error in the gradient computation due to sampling, and the (potentially)
slow rate of convergence of gradient descent. Initially, the latter effect may
dominate the error, but eventually the error will always be dominated by
stochastic sampling. Methods such as stochastic gradient descent are favored
not because they achieve extremely accurate results quickly, but because they
start making progress toward modest accuracy with relatively little effort.

Of course, there is nothing that prevents us from using small samples
to make some initial progess toward a set of regression parameters, then
increasing the sample size as we get closer to the solution!



Bindel, Spring 2017 Numerical Analysis (CS 4220)

3 Noisy Hessians

One-shot sampling is more a matter of understanding statistics than under-
standing numerical analysis. The convergence of stochastic gradient descent,
while a little more numerical, ultimately again boils down to understanding
variance propagation from step to step in the optimization process. On the
other hand, sometimes we can get great benefit from using sampling ideas
not as a replacement for the types of iterations we have discussed elsewhere
in the class, but rather as an accelerator for such iterations.

To make things concrete, suppose we want to solve the linear least squares
problem

minimize ‖Ax− b‖2

where A ∈ Rm×n. We are willing to perform the O(mn) work of evaluating
the residual, but n is big enough that we would prefer not to do the O(mn2)
work of a factorization-based direct solve. What we can do instead in this
case is:

1. Form Ã by sampling m′ � m representative rows of A (though m
should still be larger than n by some factor).

2. Compute the Cholesky factorization

R̃T R̃ =
m

m′
ÃT Ã,

where we note that E[(m/m′)ÃT Ã] = ATA.

3. Run the fixed point iteration

xk+1 = xk + R̃−1(R̃−T (AT (b− Axk)).

Subtracting the fixed point equation as usual gives us the error iteration

ek+1 = (I − R̃−1R̃−TATA)ek.

The cost of this method is O(m′n2) for setup and then O(mn) per iteration
subsequently. And for well-conditioned problems, this simple sampling ap-
proach can lead to rapid convergence. Of course, we do not need to stop at
fixed point iteration — we can use this type of stochastic estimate to build



Bindel, Spring 2017 Numerical Analysis (CS 4220)

preconditioned Krylov subspace methods for the least squares problem as
well.

If we have a nonlinear regression problem, the same ideas still hold,
but rather than using stochastic estimators to compute ATA, we compute
stochastic estimates of the Hessian. To get accurate results at the end, we
still want accurate gradients; but as we have seen in other circumstances,
we can accelerate gradient descent quite quickly with only a rather crude
approximation to a Hessian for scaling.


	Variable Projection
	Approximate iteration
	Sampling
	Noisy gradients

	Noisy Hessians

