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Notes for 2017-04-26

1 Computing with constraints

Recall that our basic problem is

minimize φ(x) s.t. x ∈ Ω

where the feasible set Ω is defined by equality and inequality conditions

Ω = {x ∈ Rn : ci(x) = 0, i ∈ E and ci(x) ≤ 0, i ∈ I}.

In the last lecture, we described three different ways to formulate constrained
optimization problem that allow us to build on techniques we previously
explored from unconstrained optimization and equation solving:

1. Constraint elimination (for equality constraints): Find a parameter-
ization g : Rn−m → Ω formulations and minimize φ(g(y)) without
constraints. This requires that the constraints be simple (e.g. affine
equality constraints).

2. Barriers and penalties: Add a term to the objective function depend-
ing on some parameter µ. This term penalizes x values that violate
the constraint (penalty methods) or that come close to ∂Ω from the
inside (barrier methods). As µ → 0, the unconstrained minimum of
the modified problems converges to the constrained minimum of the
original.

3. Lagrange multipliers: Add new variables (multipliers) corresponding to
“forces” needed to enforce the constraints. The KKT conditions are a
set of nonlinear equations in the original unknowns and the multipliers
that characterize constrained stationary points.

Our goal now is to sketch how modern constrained optimization algorithms
incorporate these different ways of looking at the problem. A full treatment
is well beyond the scope of the class, but we hope to give you at least the
keywords you will need should you encounter them in a textbook, paper,
or a cocktail party1. Ideally, knowing something about what happens in

1If you must, replace “cocktail party” with “job interview” — but if you do, I think you
should seek more interesting cocktail parties. No, I do not get invited to many cocktail
parties myself.
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the algorithms will also help you think about which of various equivalent
formulations of an optimization problem will be more (or less) friendly to
solvers. The plan is to first give a “lay of the land” of different families of
algorithms, then to give a more detailed treatment with the running example
of linearly constrained quadratic programs.

2 Lay of the Land

As we mentioned before, problems with inequality constraints tend to be more
difficult than problems with equality constraints alone, because it involves the
combinatorial subproblem of figuring out which constraints are active (a con-
straint ci(x) ≤ 0 is active if ci(x) = 0 at the optimum). Once we have figured
out the set of active constraints, we can reduce an inequality-constrained
problem to an equality-constrained problem. Hence, the purely equality-
constrained case is an important subproblem for inequality-constrained op-
timizers, as well as a useful problem class in its own right.

For problems with only equality constraints, there are several standard
options:

• Null space methods deal with linear equality constraints by reducing to
an unconstrained problem in a lower-dimensional space.

• Projected gradient methods deal with simple equality constraints by
combining a (scaled) gradient step and a projection onto a constraint
set.

• Penalty methods approximately solve an equality-constrained problem
through an unconstrained problem with an extra term that penalizes
proposed soutions that violate the constraints. That is, we use some
constrained minimizer to solve

minimize φ(x) +
1

µ

∑
i∈E

ci(x)2.

As µ→ 0, the minimizers to these approximate problems approach the
true minimizer, but the Hessians that we encounter along the way be-
come increasingly ill-conditioned (with condition number proportional
to µ−1).
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• KKT solvers directly tackle the first-order optimality conditions (the
KKT conditions), simultaneously computing the constrained minimizer
and the associated Lagrange multipliers.

• Augmented Lagrangian methods combine the advantages of penalty
methods and the advantages of the penalty formulation. In an aug-
mented Lagrangian solver, one finds critical points for the augmented
Lagrangian

L(x, λ;µ) = φ(x) +
1

µ

∑
i∈E

ci(x)2 + λT c(x)

by alternately adjusting the penalty parameter µ and the Lagrange
multipliers.

In the inequality-constrained case, we have

• Active set methods solve (or approximately solve) a sequence of equality-
constrained subproblems, shuffling constraints into and out of the pro-
posed working set along the way. These methods are particularly at-
tractive when one has a good initial estimate of the active set.

• Projected gradient methods deal with simple inequality constraints by
combining a (scaled) gradient step and a projection onto a constraint
set.

• Barrier methods and penalty methods add a term to the objective func-
tion in order to penalize constraint violations or near-violations; as in
the equality-constrained case, a parameter µ governs a tradeoff between
solution quality and conditioning of the Hessian matrix.

• Interior point methods solve a sequence of barrier subproblems using a
continuation strategy, where the barrier or penalty parameter µ is the
continuation parameter. This is one of the most popular modern solver
strategies, though active set methods may show better performance
when one “warm starts” with a good initial guess for the solution and
the active set of constraints.

As with augmented Lagrangian strategies in the equality-constrained case,
state-of-the art strategies for inequality-constrained problems often combine
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approaches, using continuation with respect to a barrier parameters as a
method of determining the active set of constraints in order to get to an
equality-constrained subproblem with a good initial guess for the solution
and the Lagrange multipliers.

The sequential quadratic programming (SQP) approach for nonlinear op-
timization solves a sequence of linearly-constrained quadratic optimization
problems based on Taylor expansion of the objective and constraints about
each iterate. This generalizes simple Newton iteration for unconstrained
optimization, which similarly solves a sequence of quadratic optimization
problems based on Taylor expansion of the objective. Linearly-constrained
quadratic programming problems are hence an important subproblem in SQP
solvers, as well as being an important problem class in their own right.

3 Quadratic programs with equality constraints

We begin with a simple case of a quadratic objective and linear equality
constraints:

φ(x) =
1

2
xTHx− xTd

c(x) = ATx− b = 0,

where H ∈ Rn×n is symmetric and positive definite on the null space of AT

(it may be indefinite or singular overall), A ∈ Rn×m is full rank with m < n,
and b ∈ Rm. Not only are such problems useful in their own right, solvers
for these problems are also helpful building blocks for more sophisticated
problems — just as minimizing an unconstrained quadratic can be seen as
the starting point for Newton’s method for unconstrained optimization.

3.1 Constraint elimination (linear constraints)

As discussed last time, we can write the space of solutions to the constraint
equations in terms of a (non-economy) QR decomposition of A:

A =
[
Q1 Q2

] [R1

0

]
where Q2 is a basis for the null space of A. The set of solutions satisfying
the constraints Ax = b is

Ω = {u+Q2y : y ∈ R(n−m), u = Q1R
−T
1 b};
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here u is a particular solution to the problem. If we substitute this parame-
terization of Ω into the objective, we have the unconstrained problem

minimize φ(u+Q2y).

While we can substitute directly to get a quadratic objective in terms of y,
it is easier (and a good exercise in remembering the chain rule) to compute
the stationary equations

0 = ∇yφ(u+Q2y) =

(
∂x

∂y

)T

∇xφ(u+Q2y)

= QT
2 (H(Q2y + u)− d) = (QT

2HQ2)y −QT
2 (d−Hu).

In general, even if A is sparse, Q2 may be dense, and so even if H is dense,
we find that QT

2HQ2 is dense.

3.2 Barriers, penalties, and conditioning

Now consider a penalty formulation of the same equality-constrained opti-
mization function, where the penalty is quadratic:

minimize φ(x) +
1

2µ
‖ATx− b‖2.

In fact, the augmented objective function is again quadratic, and the critical
point equations are

(H + µ−1AAT )x = d+ µ−1Ab.

We can analyze this more readily by changing to the Q basis from the QR
decomposition of A that we saw in the constraint elimination approach:[

QT
1HQ1 + µ−1R1R

T
1 QT

1HQ2

QT
2HQ1 QT

2HQ2

]
(QTx) =

[
QT

1 d+ µ−1R1b
QT

2 d

]
Taking a Schur complement, we have

(µ−1R1R
T
1 + F )(QT

1 x) = µ−1R1b− g

where

F = QT
1HQ1 −QT

1HQ2(Q
T
2HQ2)

−1QT
2HQ1

g = [I −QT
1HQ2(Q

T
2HQ2)

−1QT
2 ]d
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As µ→ 0, the first row of equations is dominated by the µ−1 terms, and we
are left with

R1R
T
1 (QT

1 x)−R1b→ 0

i.e. Q1Q
T
1 x is converging to u = Q1R

−T
1 b, the particular solution that we saw

in the case of constraint elimination. Plugging this behavior into the second
equation gives

(QT
2HQ2)(Q

T
2 x)−QT

2 (d−Hu)→ 0,

i.e.QT
2 x asymptotically behaves like y in the previous example. We need large

µ to get good results if the constraints are ill-posed or if QT
2HQ2 is close to

singular. But in general the condition number scales like O(µ−1), and so
large values of µ correspond to problems that are numerically unattractive.

3.3 Lagrange multipliers and KKT systems

The KKT conditions for our equality-constrained problem say that the gra-
dient of

L(x, λ) = φ(x) + λT (ATx− b)
should be zero. In matrix form, the KKT system (saddle point system)[

H A
AT 0

] [
x
λ

]
=

[
d
b

]
.

If A and H are well-conditioned, then so is this system, so there is no bad
numerical behavior. The system also retains whatever sparsity was present
in the original system matrices H and A. However, adding the Lagrange
multipliers not only increases the number of variables, but the extended
system lacks any positive definiteness that H may have.

The KKT system is closely related to the penalty formulation that we saw
in the previous subsection, in that if we use Gaussian elimination to remove
the variable λ in [

H A
AT −µI

] [
x̂
λ

]
=

[
d
b

]
,

we have the Schur complement system

(H + µ−1AAT )x̂ = d+ µ−1Ab,

which is identical to the stationary point condition for the quadratically
penalized objective.
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3.4 Augmented Lagrangian

From a solver perspective, the block 2-by-2 structure of the KKT system
looks highly attractive. Alas, we do not require that H be positive defi-
nite, nor even that it be nonsingular; to have a unique global minimum, we
only need positive definiteness of the projection of H onto the null space
(i.e. QT

2HQ2 should be positive definite). This means we cannot assume that
(for example) H will admit a Cholesky factorization.

The augmented Lagrangian approach can be seen as solving the con-
strained system

minimize
1

2
xTHx− dTx+

1

2µ
‖ATx− b‖2 s.t. ATx = b.

The term penalizing nonzero ‖ATx − b‖ is, of course, irrelevant at points
satisfying the constraint ATx = b. Hence, the constrained minimum for this
augmented objective is identical to the constrained minimum of the original
objective. However, if the KKT conditions for the modified objective take
the form [

H + µ−1AAT A
AT 0

] [
x
λ

]
=

[
d+ µ−1Ab

b

]
.

Now we do not necessarily need to drive µ to zero to obtain a good solution;
but by choosing µ small enough, we can ensure that H +µ−1AAT is positive
definite (assuming that the problem is convex subject to the constraint).
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