
Bindel, Spring 2017 Numerical Analysis (CS 4220)

Notes for 2017-04-21

Pacing the Path

So far, we have focused on nonlinear equations (f : Rn → Rn), and to a lesser
extent on optimization problems (φ : Rn → R). Often, though, nonlinear
equations and optimization problems depend on some extra parameter. For
example:

• In fitting problems, we care about the solution as a function of a regu-
larization parameter.

• In population biology, we care about equilibrium population levels as
a function of various parameters: birth rates, death rates, initial pop-
ulation sizes, etc.

• In mechanics, we care about the deformation of a structure as a function
of load.

• In chemical kinetics, we care about equilibrium chemical concentrations
as a function of temperature.

• In engineering problems involving a tradeoff between two parameters
(e.g. mass and stiffness), we care about the optimal setting of one
parameter given a fixed value of the other.

• In stochastic problems, we may care about the behavior as a func-
tion of the variance of the noise term, or perhaps as a function of an
autocorrelation time.

For these types of problems, continuation strategies are often a good choice.
The basic picture in a continuation strategy for solutions of an equation
f(x(s), s) = 0 where f : Rn × R → Rn starting from some easily computed
solution x(s0) is:

• Given x(sj), choose a new s′ = sj + ∆s.

• Predict x(s′) based on the behavior at s. Two common predictors are

– Trivial: Guess x(s′) ≈ x(sj).

Bindel, Spring 2017 Numerical Analysis (CS 4220)

– Euler: Guess x(s′) ≈ x(sj)− ∂f
∂s

(xj, sj)
−1 ∂f

∂s
(xj, sj).

• Correct by taking a few steps of Newton iteration.

• Either accept sj+1 = s′ and a corresponding x(sj) if the Newton itera-
tion converged, or try again with a smaller ∆s. If the Newton iteration
converges very quickly, we may increase ∆s.

Continuation is also natural if we really do care about a problem with
no free parameters, but we lack a good initial guess with which to start an
iterative method to solve the problem. In that case, a reasonable strategy is
often to introduce a parameter s such that the equations at s = 0 are easy
and the equations at s = 1 are the ones that we would like to solve. Such
a constructed path in problem space is sometimes called a homotopy. In
many cases, one can show that solutions are continuous (though not neces-
sarily differentiable) functions of the homotopy parameter, so that following
a homotopy path with sufficient care can provide all solutions even for hard
nonlinear problems. For this reason, homotopy methods are particularly ef-
fective for solving systems of polynomial equations. Another very popular
family of homotopy methods are the interior point methods for constrained
optimization problems, which we will touch on briefly next week.

Tough to Trace

As a starting example, let’s consider a variation on the equation from one of
our first nonlinear systems lectures, a discretization of the thermal blowup
equation

d2u

dx2
+ exp(γu) = 0

subject to u(0) = u(1) = 0. We approximate the derivative with a mesh to
get a system of equations of the form

h−2 (uj−1 − 2uj + uj+1) + exp(γuj) = 0

where uj is the approximate solution at a mesh point xj = jh with h =
1/(N + 1). The boundary conditions are u0 = uN+1 = 0, and the difference
equations govern the behavior on the interior. Compared to the last time we
saw this system, though, we have introduced a new feature: the rate constant
γ.

Bindel, Spring 2017 Numerical Analysis (CS 4220)

0 1 2 3

20

30

·10−2

γ

v
(0
.5

)

0 1 2 3

10−3

10−2

10−1

γ

∆
γ

Figure 1: Center solution and step size versus γ

When γ is equal to zero, the differential equation becomes

d2u

dx2
+ 1 = 0,

which has the solution (subject to boundary conditions)

u(x; 0) =
1

2
x(1− x).

For larger values of γ, things become more interesting. Based on physical
reasoning, we expect the solutions to get more unstable (and harder) as γ
grows. We therefore consider a strategy in which we incrementally increase
γ, at each point using a trivial predictor (the solution for the previous γ)
as an initial guess for a Newton iteration. If the Newton iteration does not
converge in a few steps, we try again with a smaller step, stopping once the
step size has become too small.

The behavior of the algorithm as a function of γ is shown in Figure 1.
As we get just past γ = 3.5, the solution becomes more and more sensitive
to small changes in γ, and we have to take shorter steps in order to get
convergence. This is reflective of an interesting physical phenomenon known
(a bifurcation). Mathematically, what we see is the effect of the Jacobian
becoming closer and closer to singular at the solution.

Bindel, Spring 2017 Numerical Analysis (CS 4220)

0 0.5 1 1.5 2 2.5 3 3.5

50

100

·10−2

γ

v
(0
.5

)

Figure 2: Center solution versus γ traced by continuation in the midpoint
value.

Picking Parameters

In the previous section, we saw that continuation allowed us to march γ
right up to some critical parameter, but not beyond. We can get a clearer
picture of what is going on — and better solver stability — if we look at
the same problem as a function of a different parameter. In particular, let
us consider controlling the midpoint value µ, and letting both v and γ be
implicit functions of the midpoint value. That is, we have the equations

F (v, γ;µ) =

[
−h−2TNv + exp(γv)

eTmidv − µ

]
= 0

with the Jacobian matrix (with respect to v and γ)

∂F

∂(v, γ)
=

[
−h2Tn + γ diag(exp(γv)) v � exp(γv)

eTmid 0

]
where we use a� b to denote elementwise multiplication. If we use the same
continuation process with a trivial predictor to trace out the behavior of
the midpoint as a function of γ, we obtain Figure 2. This picture makes the
behavior of the solution close to γ = 3.5 a little more clear. The phenomenon
shown is called a fold bifurcation. Physically, we have that for γ . 3.5, there
are two distinct solutions (one stable and one unstable); as γ increases, these
two solutions approach each other until at some critical γ value they “meet.”
Beyond the critical value, there is no solution to the equations.

Bindel, Spring 2017 Numerical Analysis (CS 4220)

Pseudoarclength Ideas

What if we think we might run into a fold bifurcation, but do not know a
good alternate parameter for continuation? A natural idea is to parameterize
the solution curve (e.g. (v(γ), γ)) in terms of an arclength parameter. In
practice, we do not care too much about exactly controlling arclength; it is
just a mechanism to avoid picking parameters. Therefore, we pursue pseudo-
arclength strategies as an alternative.

For the simplest pseudo-arclength continuation strategy, consider a func-
tion F : Rn+1 → Rn. Assuming the Jacobian has maximal rank, we expect
there to be a solution curve x : R → Rn such that F (x(s)) = 0. The null
vector of the Jacobian F ′ is tangent to x, and so we can use this to predict
a new point. The basic procedure to get a new point on the curve starting
from xj is then:

• Consider the Jacobian F ′(xj) ∈ Rn×(n+1) and compute a null vector
v (a simple approach is to compute a QR factorization). Choose a
tangent vector tj ∝ v; usually we normalize so that tj−1 · tj > 0.

• Move a short distance along the tangent direction (Euler predictor), or
otherwise predict a new point.

• Correct back to the curve by the iteration

yk+1 = yk − F ′(yk)†F (yk)

where F ′(yk)† ∈ R(n+1)×n is the pseudoinverse of the Jacobian. This is
equivalent to solving the problem

minimize ‖pk‖2 s.t. F ′(yk)pk = −F (yk).

The steps of this underdetermined system should quickly take us back
to a new point on the curve.

• If the iteration curves and the new point is OK, accept the point and
move on. Otherwise, reject the point and try again with a shorter step
in the tangent direction.

Bindel, Spring 2017 Numerical Analysis (CS 4220)

And Points Beyond

There is a large and fascinating literature on numerical continuation meth-
ods and on the numerical analysis of implicitly defined functions. Beyond the
predictor-corrector methods that we have described, there are various other
methods that address similar problems: piecewise linear (simplex) continua-
tion, pseudo-transient continuation, and so forth. We can combine continu-
ation ideas with all the other ideas that we have described in the course; for
example, one can do clever things with Broyden updates as one walks along
the curve. We can also apply step control techniques that some of you may
have learned in a class like CS 4210 in the context of methods for solving
ordinary differential equations.

A little knowledge of continuation methods can take you a long way, but
if you would like to know more, I recommend Introduction to Numerical
Continuation Methods by Allgower and Georg.

Appendix: Codes

Continuation in γ

1 function [V,x,gammas] = blowupc
2

3 % -- Number of (interior) mesh points and mesh spacing
4 N = 50; % Number of (interior) mesh points
5 h = 1/(N+1); % Mesh spacing
6 x = linspace(0,1,N+2)’; % Mesh points
7

8 % -- Set up some things for solver
9 e = ones(N,1);

10

11 % -- Initial value for gamma and solution at gamma = 0
12 gamma = 0;
13 v = x .* (1-x)/2;
14 V = v;
15 gammas = [gamma];
16

17 % -- Continuation loop
18 dgamma = 0.1;
19 vprev = v;
20

21 while (dgamma > 1e-4) & (gamma < 100)

Bindel, Spring 2017 Numerical Analysis (CS 4220)

22 gamma_prev = gamma;
23 gamma = gamma + dgamma;
24

25 % -- Newton loop (fixed number of steps)
26 for k = 1:5
27

28 % Compute residual vector and record norm
29 r = (v(1:N)-2*v(2:N+1)+v(3:N+2))/hˆ2 + exp(gamma * v(2:N+1));
30

31 % Form (sparse) Jacobian
32 J = spdiags([e/hˆ2, gamma*exp(gamma * v(2:N+1))-2/hˆ2, e/hˆ2], -1:1, N,N);
33

34 % Compute Newton update
35 p = J\r;
36 v(2:N+1) = v(2:N+1)-p;
37

38 % Quit if we are making small changes
39 if norm(p) < 1e-10 * norm(v), break; end
40 end
41

42 % -- Accept step or reject and try a shorter step
43 if norm(p) < 1e-10 * norm(v)
44 V = [V, v];
45 gammas = [gammas, gamma];
46 vprev = v;
47 else
48 v = vprev;
49 gamma = gamma_prev;
50 dgamma = dgamma / 2;
51 end
52

53 end

Continuation in µ

1 function [V,x,gammas] = blowupmid
2

3 % -- Number of (interior) mesh points and mesh spacing
4 N = 50; % Number of (interior) mesh points
5 h = 1/(N+1); % Mesh spacing
6 x = linspace(0,1,N+2)’; % Mesh points
7

8 % -- Set up some things for solver
9 e = ones(N,1);

10

Bindel, Spring 2017 Numerical Analysis (CS 4220)

11 % -- Initial value for gamma and solution at gamma = 0
12 gamma = 0;
13 v = x .* (1-x)/2;
14 vmid = 0.125;
15 V = v;
16 gammas = [gamma];
17

18 % -- Continuation loop
19 dvmid = 0.01;
20 vprev = v;
21 gamma_prev = gamma;
22

23 while (dvmid > 1e-4) & (vmid < 1)
24 vmid_prev = vmid;
25 vmid = vmid + dvmid;
26

27 % -- Newton loop (fixed number of steps)
28 for k = 1:5
29

30 % Compute residual vector
31 r = [(v(1:N)-2*v(2:N+1)+v(3:N+2))/hˆ2 + exp(gamma * v(2:N+1));
32 v(N/2+1)-vmid];
33

34 % Form (sparse) Jacobian
35 J = spdiags([e/hˆ2, gamma*exp(gamma * v(2:N+1))-2/hˆ2, e/hˆ2], -1:1, N,N);
36 b = v(2:N+1) .* exp(gamma * v(2:N+1));
37 c = zeros(1,N); c(N/2) = 1;
38

39 % Compute Newton update
40 p = [J, b; c, 0]\r;
41 v(2:N+1) = v(2:N+1)-p(1:end-1);
42 gamma = gamma-p(end);
43

44 % Quit if we are making small changes
45 if norm(p) < 1e-10 * norm(v)
46 dvmid = min(2*dvmid, 0.05);
47 break;
48 end
49 end
50

51 % -- Accept step or reject and try a shorter step
52 if norm(p) < 1e-10 * norm(v)
53 V = [V, v];
54 gammas = [gammas, gamma];
55 vprev = v;

Bindel, Spring 2017 Numerical Analysis (CS 4220)

56 gamma_prev = gamma;
57 else
58 v = vprev;
59 gamma = gamma_prev;
60 vmid = vmid_prev;
61 dvmid = dvmid / 2;
62 end
63

64 end

