Bindel, Spring 2017 Numerical Analysis (CS 4220)

Notes for 2017-04-19

1 Gauss-Newton

Before beginning our (brief) discussion of trust region methods, we first turn
to another popular iterative solver: the Gauss-Newton method for nonlinear
least squares problems. Given f : R™ — R™ for m > n, we seek to minimize
the objective function
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The Gauss-Newton approach to this optimization is to approximate f by a
first order Taylor expansion in order to obtain a proposed step:
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Writing out the pseudo-inverse more explicitly, we have
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The matrix f’(xx)" f'(x,) is positive definite if f/(xy) is full rank; hence, the
direction py is always a descent direction provided xj is not a stationary point
and f'(xy) is full rank. However, the Gauss-Newton step is not the same as
the Newton step, since the Hessian of ¢ is

m

Hy(x) = f'(2)" f'(x) + ) fi(w)Hy, ().

j=1
Thus, the Gauss-Newton iteration can be seen as a modified Newton in which
we drop the inconvenient terms associated with second derivatives of the
residual functions f;.

Assuming f’ is Lipschitz with constant L, an error analysis about a min-

imizer x, yields

lewall < LILF @)1 @llllerll + OCllex]®).

Thus, if the optimal residual norm ||f(z.)| is small, then from good ini-
tial guesses, Gauss-Newton converges nearly quadratically (though the linear
term will eventually dominate). On the other had, if || f(xz.)| is larger than
|| f'(z,)T]|, then the iteration may not even be locally convergent unless we
apply some type of globalization strategy.
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2 Regularization and Levenberg-Marquardt

While we can certainly apply line search methods to globalize Gauss-Newton
iteration, an alternate proposal due to Levenberg and Marquardt is solve a
reqularized least squares problem to compute the step; that is,

1 A
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The scaling matrix D may be an identity matrix (per Levenberg), or we may
choose D? = diag(f'(zx)T f'(x1)) (as suggested by Marquardt).

For A = 0, the Levenberg-Marquardt step is the same as a Gauss-Newton
step. As A becomes large, though, we have the (scaled) gradient step

oy = —%DQ Fn) + O(\2),

Unlike Gauss-Newton with line search, changing the parameter A affects not
only the distance we move, but also the direction.

In order to get both ensure global convergence (under sufficient hypothe-
seson f, as usual) and to ensure that convergence is not too slow, a variety of
methods have been proposed that adjust A dynamically. To judge whether A
has been chosen too aggressively or conservatively, we monitor the gain ratio,
or the ratio of actual reduction in the objective to the reduction predicted
by the (Gauss-Newton) model:

y— @I = 1 e p)?
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If the step decreases the function value enough (p is sufficiently positive), then
we accept the step; otherwise, we reject it. For the next step (or the next
attempt), we may increase or decrease the damping parameter A\ depending
on whether p is close to one or far from one.

3 Consider constraints

There is another way to think of the Levenberg-Marquardt step. Consider
the minimization problem

o1
pr = argmin, o[ () + f'()p]” st | Dp]| < A

There are two possible cases in this problem:
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L ||f'(x)Tf(z)]| < A, and the solution is the Gauss-Newton step

2. Otherwise the Gauss-Newton step is too big, and we have to enforce
the constraint ||Dp|| = A. For convenience, we rewrite this constraint
as (|| Dp||* — A?%)/2 = 0.

As we will discuss in more detail in a few lectures, we can solve the
equality-constrained optimization problem using the method of Lagrange
multipliers. We define the Langrangian for the optimization problem to be

A
Lip.X) = gl ) + ol + 5 (109l - 4%).

The solution to the constrained optimization problem satisfies the critical
point equation OL/Jp = 0 and OL/OX = 0. The equation JL/Jp = 0 is the
same as the Tikhonov-regularized least squares problem with regularization
parameter \. Whether A is treated as a regularization parameter or a multi-
plier that enforces a constraint is thus simply a matter of perspective. Hence,
we can consider the Levenberg-Marquardt method as minimizing the model
| f(xx) + f(xk)p|| subject to the constraint ||Dp|| < A, where a larger or
smaller value of A corresponds to a smaller or larger value of A. We think of
the region || Dp|| < A as the region where the Gauss-Newton model provides
good guidance for optimization; that is, it is a region where we trust the
model.

4 Trust regions

A trust region method for mininizing ¢ involves a model j(p) that is supposed
to approximate the decrease ¢(xy + p) — ¢(xy) associated with taking a step
p; and a trust region, often chosen to be a sphere ||p||* < A, where we believe
the model to provide reasonable predictions. At each step of the method, we
(approximately) minimize the model within the trust region to get a proposed
step p, then check the gain ratio associated with taking that step:

P(zr) — ok + pr)
p(0) — pu(pr)

Pk =

Depending on whether the gain ratio, we adjust A; a strategy proposed in
Nocedal and Wright is:
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o If pp < 1/4, we were too aggressive; set Agp1 = Ag/4.

o If pp, > 3/4 and ||px|]| = Ak, we were too conservative; set Apiq =
min(2Ag, Apax)-

e Otherwise, leave Ay 1 = Ay.

We also use the gain ratio to decide whether to accept or reject the step. For
pr > n for a fixed n € [0,1/4), we accept (zx+1 = 2, +p); otherwise we reject
(Try1 = 1)

Compared to a line search strategy, trust region methods have the ad-
vantage that we adapt not just the step length but also the direction of
the search. Consequently, trust region methods often exhibit more robust
convergence, though both line search and trust region approaches exhibit
good global convergence properties, and both approaches lead to eventual
superlinear convergence when paired with a Newton model (i.e. a quadratic
approximation centered at zy) or a quasi-Newton method such as BFGS.

5 Inexact search and the dog-leg

One of the main difficulties with the trust region approach is solving a con-
strained quadratic optimization as a subproblem. Because we do not know
the Lagrange multiplier in advance, solving this problem exactly requires sev-
eral times the effort of solving an unconstrained problem, as we might do in
an ordinary Newton or quasi-Newton method without the trust region mod-
ificiation. As with line search, though, the cost of doing an exact search is
probably not worthwhile — we would rather get a good-enough approximate
solution and move on.

A popular inexact search approach is the dog leg method!. The idea of
the dog leg method is to approximate the shape of the curve

p(A) = argmin, pu(p) s.t. []p| < A
based on the observation that
e p(0) =0.

o '(0) x —=Vo(zy).

!There is, in fact, a double dogleg method. I double dogleg dare you to look it up.
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e For large A, p(A) = po is the unconstrained minimizer of p.

We thus approximate the p(A) curve by a piecewise linear curve with
e A line segment from 0 to —aV¢(zg) where pu(—aVe(zy)) is mimimized.
e Another line segment from —aVé(zg) t0 poo.

A related approach is two-dimensional subspace minimization, which involves
a constrained miminization over the two-dimensional subspace spanned by
—Voé(zr) and peo.

The Steighaug method combines the trust region approach with a (lin-
ear) conjugate gradient solve on the quadratic model problem. The idea is
to trace out a polygonal path (as in the dog leg method) connecting the CG
iterates, until that path intersects the trust region boundary. If the (approx-
imate) Hessian used by the model is indefinite, CG runs until it discovers the
indefiniteness, then plots a path toward where the model descends to —oo.
There are more recent variants which combine Newton, trust regions, and
Krylov subspaces in various clever ways; other than mentioning that they
exist, though, we leave this topic for the interested student to pursue in her
copious free time.
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