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Notes for 2017-04-17

1 Broadening the Basin

All the methods we have so far discussed for solving nonlinear equations or
optimization problems have the form

xk+1 = xk + αkpk

where αk is a step size and pk is a search direction. We have described
a wide variety of methods for choosing the search directions pk. We have
also analyzed several of these methods (or at least pointed to their analysis)
under the assumption that the step sizes were chosen to be αk = 1 (or, in our
analysis of gradient descent, αk = α some constant). But so far, our analyses
have all come with the caveat that convergence is only assured for initial
guesses that are “good enough.” We call the set of initial guesses for which
a nonlinear solver or optimizer converges to a given solution x∗ the basin of
convergence for x∗. In a previous lecture, we have already discussed some
features that make the basin of convergence large or small for Newton and
modified Newton iterations. Today we begin our discussion of globalization
methods that allow us to guarantee convergence even if we lack a good enough
initial guess to make our unguarded iterations converge.

In our discussion today, it will be convenient to focus on globalization by
line search methods that make intelligent, adaptive choices of the step size.
Informally, these methods work with any “reasonable” method for choos-
ing search directions pk (which should at least be descent directions). An
exact line search method seeks to minimize g(α) = φ(xk + αpk) by a one-
dimensional optimization; but it turns out that the work required for exact
line search usually does not justify the benefit. Instead, we consider inexact
line search methods that choose step sizes αk such that the methods:

• Make significant progress in the downhill direction (αk not too small).

• But don’t step so far they go back uphill (αk not too big).

We need to tighten and formalize these conditions a little bit in order to
obtain formal convergence results, but this is the right intuition.
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2 A series of unfortunate examples

In order to illustrate the conditions we will require – and the limits of our
approach – we will first consider three illustrative examples.

2.1 The long march to infinity

Consider the one-dimensional objective function

φ(x) = x tan−1(x)− 1

2
log(1 + x2).

The first and second derivatives of φ are

φ′(x) = tan−1(x)

φ′′(x) =
1

1 + x2
.

This is a convex function with a unique global minimum φ(0) = 0. To find
this minimum, we might first consider Newton’s iteration:

xk+1 = xk −
φ′(x)

φ′′(x)
= xk − (1 + x2k) tan−1(xk).

The Newton step is always in a descent direction, and the iteration converges
for |x0| ≤ ξ ≈ 1.3917; here ξ is the solution to the “anti-fixed-point” equation

−ξ = ξ − (1 + ξ2) tan−1(ξ).

For any |x0| > ξ, the iterates blow up, alternating between positive and
negative numbers of increasingly wild magnitudes. The Newton step always
goes in the right direction, but it goes too far.

A simple fix, which works in this case, is to check for progress and cut
the step in half if it is not obtained; that is, we take

xk+1 = xk − αk
φ′(xk)

φ′′(xk)

where αk is the first value 2−j for j = 0, 1, . . . that guarantees φ(xk+1) <
φ(xk). The corresponding code is shown in Figure 1.
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1 % Set up function, gradient, and Hessian
2 phi = @(x) x.*atan(x) - log(1+x.ˆ2)/2;
3 g = @(x) atan(x);
4 H = @(x) 1./(1+x.ˆ2);
5

6 % Compute initial guess and function value
7 x = 2
8 phik = phi(x);
9

10 % Newton iteration with naive line search
11 for k = 1:10
12

13 % Try out a Newton step
14 p = -g(x)/H(x);
15 a = 1;
16 phip = phi(x+p);
17

18 % While the objective is too big, cut the step size
19 while phip > phik
20 a = a/2;
21 phip = phi(x+a*p);
22 end
23

24 % Update x and reference objective
25 x = x + a*p
26 phik = phip;
27

28 end

Figure 1: 1D Newton optimizer with a naive backtracking line search.
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Figure 2: Oscillation of Newton for φ(x) = 19x2 − 4x4 + 7
9
x6. The iterates

jump back and forth between just greater than 1 and just less than -1 (top),
and the objective values are monotonically decreasing toward φ(1) ≈ 15.7778
(bottom).
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2.2 Obscure oscillation

As a second example, consider minimizing the polynomial

φ(x) = 19x2 − 4x4 +
7

9
x6.

The relevant derivatives are

φ′(x) = 38x− 16x3 +
14

3
x5

φ′′(x) = 38− 48x2 +
70

3
x4.

The function is convex — the minimum value of φ′′(x) is about 13.3 — and
there is a unique global minimum at zero. So what happens if we start
Newton’s iteration at x0 = 1.01?

The progress of the iteration is shown in Figure 2. If we look only at the
objective values, we seem to be making progress; each successive iterates is
smaller than the preceding one. But the values of φ are not converging toward
zero, but toward φ(±1) = 142/9 ≈ 15.778! The iterates themselves slosh
back and forth, converging to a limit cycle where the iteration cycles between
1 and −1. Furthermore, while this polynomial was carefully chosen, the
qualitative cycling behavior is robust to small perturbations to the starting
guess and to the polynomial coefficients. Though it appears to be making
progress, the iteration is well and truly stuck.

The moral is that decreasing the function value from step to step is not
sufficient. Though just insisting on a decrease in the objective function from
step to step will give convergence for many problems, we need a stronger
condition to give any sort of guarantee. But this, too, can be fixed.

2.3 The planes of despair

As a final example, consider the function

φ(x) = exp(−x2/2)− exp(−x4/4),

plotted in Figure 3. This function has two global minima close at around
±0.88749 separated by a local maximum at zero, and two global maximum
around ±1.8539. But if we always move in a descent direction, then any
iterate that lands outside the interval [−1.8539, 1.8539] dooms the iteration to
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Figure 3: Plot of φ(x) = exp(−x2/2)− exp(−x4/4)

never enter that interval, and hence never find either of the minima. Instead,
most solvers are likely to march off toward infinity until the function is flat
enough that the solver decides it has converged and terminates. This is the
type of problem that we do not solve with globalization, and illustrates why
good initial guesses remain important even with globalization.

3 Backtracking search and the Armijo rule

The idea of a backtracking search is to try successively shorter steps until
reaching one that makes “good enough” progress. The step sizes have the
form αρj for j = 0, 1, 2, . . . where α is the default step size and ρ < 1 is a
backtracking factor (often chosen to be 0.5). As we saw in our examples,
we need a more stringent acceptance condition than just a decrease in the
function value — otherwise, we might get unlucky and end up converging to
a limit cycle. That stronger condition is known as the sufficient decrease or
the Armijo rule. For optimization, this condition takes the form

φ(xk + αpk) ≤ φ(xk) + c1αφ
′(xk)pk

for some c1 ∈ (0, 1). Assuming that pk is a descent direction, this condition
can always be satisfied for small enough α, as Taylor expansion gives

φ(xk + αpk) = φ(xk) + αφ′(xk)pk + o(α).

In practice, it is fine to choose c1 to be quite small; the value of 10−4 is
suggested by several authors. This condition can always be satisfied for small
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enough choices of α. Such a line search algorithm looks much the same as
the naive line search that we described earlier, but with a more complicated
termination condition on the line search loop:

1 % Given a full step p and current value pk, current gradient gk
2 a = aref;
3 phip = phi(x+a*p);
4 slope = gk’*p;
5

6 % Reduce the step until the Armijo condition is satisfied
7 while phip > phik + c1*a*slope
8 a = rho*a;
9 phip = phi(x+a*p);

10 end
11

12 % Update x and reference objective
13 x = x + a*p;
14 phik = phip;

The contraction factor ρ may be chosen a priori (e.g. ρ = 0.5), or it may be
chosen dynamically from some range [ρmin, ρmax] where 0 < ρmin < ρmax < 1.

4 The curvature condition

Backtracking line search is not the only way to choose the step length. For
example, one can also use methods based on a polynomial approximation to
the objective function along the ray defined by the search direction, and this
may be a better choice for non-Newton. In this case, we need to guard not
only against steps that are too long, but also steps that are too short. To do
this, it is helpful to enforce the curvature condition

∂φ

∂pk
(xk + αpk) ≥ c2

∂φ

∂pk
(xk)

for some 0 < c1 < c2 < 1. The curvature condition simply says that if the
slope in the pk direction at a proposed new point is almost the same as the
slope at the starting point, then we should keep going downhill! Together,
the sufficient descent condition and the curvature conditions are known as
the Wolfe conditions. Assuming φ is at least continuously differentiable and
that it is bounded from below along the ray xk + αpk, it is always possible
to choose a step size α that satisfies the Wolfe conditions.
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5 Armijo and nonlinear equations

While the Armijo rule evolved in optimization theory, the same concept of
sufficient decrease of the function applies in nonlinear equation solving. To
measure progress, we typically monitor the residual norm ‖f(x)‖. If pk =
−f ′(xk)−1f(xk) is the Newton direction from a point xk, a linear model of f
predicts that

‖f(xk + αpk)‖ ≈ ‖f(xk) + αf ′(xk)pk‖ = (1− α)‖f(xk)‖;

that is, the predicted decrease is by α‖f(xk)‖. We insist on some fraction of
the predicted decrease as a sufficient decrease to accept a step, yielding the
condition

‖f(xk + αpk)‖ ≤ (1− c1α)‖f(xk)‖.

We don’t have to take a Newton step to use this criteria; it is sufficient that
the step satisfy an inexact Newton criterion such as

‖f(xk) + f ′(xk)pk‖ ≤ η‖f(xk)‖

for some η < 1.

6 Global convergence

In general, if we seek to minimize an objective φ that is C1 with a Lipschitz
first derivative and

• We use one of the line search algorithms sketched above (backtracking
line search or line search satisfying the Wolfe conditions),

• The steps pk are gradient related (‖pk‖ ≥ m‖∇φ(xk)‖ for all k – they
don’t shrink too fast),

• The angles between pk and −∇φ(xk) are acute and uniformly bounded
away from away from ninety degrees.

• The iterates are bounded (it is sufficient that the set of points less than
φ(x0) is bounded),



Bindel, Spring 2017 Numerical Analysis (CS 4220)

then we are guaranteed global convergence to a stationary point. Of course,
even with all these conditions, we might converge to a saddle or a local
minimizer that is different from the solution we hoped to find; and we are not
guaranteed fast convergence. So the choice of initial guess, and the choice of
iterative methods, still matters a great deal. Nonetheless, the point remains
that an appropriately chosen line search can help improve the convergence
behavior of the methods we have described so far by quite a bit.

We have not described the full range of possible line searches. In addition
to algorithms that inexactly minimize the objective with espect to the line
search parameter, there has also been some work on non-monotone line search
algorithms that allow increases in the function values, as long as progress
is made in some more averaged sense (e.g. the new point has a objective
function value smaller than the maximum objective function for the past
few points). This is useful for improving convergence speed on some hard
problems, and is useful in the context of particular classes of methods such
as spectral projected gradient (about which we will say nothing in this class
other than the name).


	Broadening the Basin
	A series of unfortunate examples
	The long march to infinity
	Obscure oscillation
	The planes of despair

	Backtracking search and the Armijo rule
	The curvature condition
	Armijo and nonlinear equations
	Global convergence

