
Bindel, Spring 2017 Numerical Analysis (CS 4220)

Notes for 2017-04-14

1 Taylor revisited

Though we have mentioned optimization problems intermittently through
the last few lectures, we have focused mainly on the problem of finding the
solutions of nonlinear equations. We now turn to the problem of finding
(local) optima of functions with at least two continuous derivatives.

Recall the basic Taylor expansion that we outlined before the break; if
φ : Rn → R is C2 (i.e. if it is at least twice continuously differentiable) then
we have the expansion

φ(x+ u) = φ(x) + φ′(x)u+
1

2
uTHφ(x)u+ o(‖u‖2)

where φ′(x) ∈ R1×n is the derivative of φ and Hφ is the Hessian matrix
consisting of second derivatives:

(Hφ)ij =
∂φ

∂xi∂xj
.

The gradient ∇φ(x) = φ′(x)T is a column vector (rather than a row vector).
If ∇φ(x) 6= 0 then ∇φ(x) and −∇φ(x) are the directions of steepest

ascent and descent, respectively. If ∇φ(x) = 0, then we say x is a stationary
point or critical point. The first derivative test says that if x minimizes φ (and
φ is differentiable) then the gradient of x must be zero; otherwise, there is a
“downhill” direction, and a point near x achieves a smaller function value.

A stationary point does not need to be a local minimizer; it might also
be a maximizer, or a saddle point. The second derivative test says that for
a critical point x to be a (local) minimizer, the Hessian Hφ(x) must be at
least positive semi-definite at a (local) minimizer. If x is a stationary point
and Hφ is strictly positive definite, then x must be a local minimizer; in this
case, we call x a strong local minimizer.

One approach to the problem of minimizing φ is to run Newton iteration
on the critical point equation ∇φ(x) = 0. The Jacobian of the function
∇φ(x) is simply the Hessian matrix, so Newton’s iteration for finding the
critical point is just

xk+1 = xk −Hφ(xk)
−1∇φ(xk).

Bindel, Spring 2017 Numerical Analysis (CS 4220)

We can derive this in the same way that we derived Newton’s iteration for
other nonlinear equations; or we can derive it from finding the critical point
of a quadratic approximation to φ:

φ̂(xk + pk) = φ(xk) + φ′(xk)pk +
1

2
pTkHφ(xk)pk.

The critical point occurs for pk = −Hφ(xk)
−2∇φ(xk); but this critical point

is a strong local minimum iff Hφ(xk) is positive definite.
There are a few reasons we might want to dig deeper:

• As with other systems of nonlinear equations, we might prefer to avoid
a Newton iteration because of the cost of factoring the Jacobian (in
this case, the Hessian matrix, which is the Jacobian of ∇φ).

• We can take advantage of the fact that this is not a general system of
nonlinear equations in devising and analyzing methods.

• If we only seek to solve the critical point equation, we might end up
finding a maximizer or saddle point as easily as a minimizer.

For this reason, we will discuss a different class of iterations, the (scaled)
gradient descent methods and their relatives. At the end of the day, we will
see many of the same ideas that we saw when treating nonlinear equations,
but we will get to them by a slightly different path.

2 Gradient descent

One of the simplest optimization methods is the steepest descent or gradient
descent method

xk+1 = xk + αkpk

where αk is a step size and pk = −∇φ(xk). To understand the convergence
of this method, consider gradient descent with a fixed step size α for the
quadratic model problem

φ(x) =
1

2
xTAx+ bTx+ c

where A is symmetric positive definite. We have computed the gradient for
a quadratic before:

∇φ(x) = Ax+ b,

Bindel, Spring 2017 Numerical Analysis (CS 4220)

which gives us the iteration equation

xk+1 = xk − α(Axk + b).

Subtracting the fixed point equation

x∗ = x∗ − α(Ax∗ + b)

yields the error iteration

ek+1 = (I − αA)ek.

If {λj} are the eigenvalues of A, then the eigenvalues of I−αA are {1−αλj}.
The spectral radius of the iteration matrix is thus

min{|1− αλj|}j = min (|1− αλmin|, |1− αλmax|) .

The iteration converges provided α < 1/λmax, and the optimal α is

α∗ =
2

λmin + λmax

,

which leads to the spectral radius

1− 2λmin

λmin + λmax

= 1− 2

1 + κ(A)

where κ(A) = λmax/λmin is the condition number for the (symmetric positive
definite) matrix A. If A is ill-conditioned, then, we are forced to take very
small steps to guarantee convergence, and convergence may be heart break-
ingly slow. We will get to the minimum in the long run — but, then again,
in the long run we all die.

The behavior of steepest descent iteration on a quadratic model problem
is indicative of the behavior more generally: if x∗ is a strong local minimizer
of some general nonlinear φ, then gradient descent with sufficiently small
step size will converge locally to x∗. But if Hφ(x∗) is ill-conditioned, then
one has to take small steps, and the rate of convergence can be quite slow.

Not all problems are terrible ill-conditioned, and so in many cases simple
gradient descent algorithms can work quite well. For ill-conditioned prob-
lems, though, we would like to change something about the algorithm. One
approach is to keep the gradient descent direction and adapt the step size
in a clever way; the Barzelei-Borwein (BB) method and related approaches
follow this approach. These remarkable methods deserve to be better known,
but in the interest of fitting the course into the semester, we will turn instead
to the problem of choosing better directions.

Bindel, Spring 2017 Numerical Analysis (CS 4220)

3 Scaled gradient descent

The scaled gradient descent iteration takes the form

xk+1 = xk + αkpk, Mkpk = −∇φ(xk).

where αk and pk are the step size and direction, as before, and Mk is a sym-
metric positive definite scaling matrix. Positive definiteness of Mk guarantees
that pk is a descent direction, i.e.

φ′(xk)pk = ∇φ(xk)
Tpk = −∇φ(xk)

TM−1
k ∇φ(xk) < 0;

this in turn guarantees that if αk is sufficiently small, φ(xk+1) will be less
than φ(xk) — unless φ(xk) is a stationary point (i.e. ∇φ(xk) = 0).

How does scaling improve on simple gradient descent? Consider again
the quadratic model problem

∇φ(x) = Ax+ b,

and let M and α be fixed. With a little work, we derive the error iteration

ek+1 = (I − αMA)ek

If αM = A−1, the iteration converges in a single step! Going beyond the
quadratic model problem, if Hφ(xk) is positive definite, we might choose
Mk = Hφ(xk) — which would correspond to a Newton step.

Of course, Hφ(xk) does not have to be positive definite everywhere! Thus,
most minimization codes based on Newton scaling use Mk = Hφ(xk) when
it is positive definite, and otherwise use some modification. One possible
modification is to choose a diagonal shift Mk = Hφ(xk) + βI where β is suf-
ficiently large to guarantee positive definiteness. Another common approach
is to compute a modified Cholesky factorization of Hφ(xk). The modified
Cholesky algorithm looks like ordinary Cholesky, and is identical to ordi-
nary Cholesky when Hφ(xk) is positive definite. But rather than stopping
when it encounters a negative diagonal in a Schur complement, the modified
Cholesky approach replaces that element with something else and proceeds.

4 Modified and quasi-Newton optimizers

In the last two lectures, we described a variety of Newton-like methods for
solving nonlinear equations that might involve fewer derivative computations

Bindel, Spring 2017 Numerical Analysis (CS 4220)

and lower cost less per step than Newton iteration. Most of these ideas carry
over to optimization problems as well, but with some twists to ensure that
steps always move in a descent direction. Some of the variants are:

• Scaling with an approximate Hessian: Here we choose Mk to be
a symmetric positive definite matrix that in some sense approximates
Hφ(xk) (at least when the Hessian is positive definite) and for which it
is easy to solve linear systems.

• Inexact Newton steps: Here we compute a (modified) Newton step,
but inexactly (e.g. using a Krylov subspace method like PCG).

• Quasi-Newton steps: The most popular quasi-Newton method for
optimization is the BFGS method (Broyden-Fletcher-Goldfarb-Shanno).
The Broyden in BFGS is the same as the Broyden we saw in the popu-
lar Broyden quasi-Newton method for nonlinear equation solving, but
the update formula itself is a little different. We still seek to satisfy
a secant condition, but in BFGS we also seek to retain symmetry and
positive definiteness of the approximate Hessian matrix. This is done
with a rank two update.

The limited memory BFGS (L-BFGS) method uses only a fixed set of
previous iterates in the Hessian approximation, rather than considering
the entire past convergence history. L-BFGS is one of the most popular
methods for large scale optimization.

There are also “Krylov-like” methods for choosing update directions, most
prominent of which are the nonlinear conjugate gradient methods. There are
many potential nonlinear CG methods; for quadratic objective functions,
they are all equivalent, but they differ when applied to more general func-
tions. Newton-like methods may be more effective, but usually require more
memory and computation per step. Anderson acceleration (discussed in the
last lecture) has also been successfully applied to optimization methods.

	Taylor revisited
	Gradient descent
	Scaled gradient descent
	Modified and quasi-Newton optimizers

