
Bindel, Spring 2017 Numerical Analysis (CS 4220)

Notes for 2017-04-10

1 Life beyond Newton

Newton’s method has many attractive properties, but Newton steps may not
be cheap. At each step, we need to:

• Form the function f and the Jacobian. This involves not only compu-
tational work, but also analytical work – someone needs to figure out
those derivatives!

• Solve a linear system with the Jacobian. This is no easier than any
other linear solve problem! Indeed, it may be rather expensive for
large systems, and factorization costs cannot (in general) be amortized
across Newton steps.

The Jacobian (or the Hessian if we are looking at optimization problems) is
the main source of difficulty. Now we consider several iterations that deal
with this difficulty in one way or the other.

2 Almost Newton analysis

In these notes, we will be somewhat careful about the analysis, but in general
you are not responsible for remembering this level of detail. We will try to
highlight the points that are important in practice for understanding when
solvers might run into trouble, and why.

A common theme in our analysis of “almost Newton” iterations is that
we will build on Newton convergence. To simplify life, we assume throughout
that f is C1 and the Jacobian is Lipschitz with constantM and has a bounded
inverse (i.e. ‖f ′(x)−1‖ ≤ B for x in some neighborhood of x∗).

Let’s start by looking again at the error from a Newton step. A Newton
step starting from x near x∗ is

p(x) = −f ′(x)−1f(x) = −f ′(x)−1[f(x)− f(x∗)].

By the mean value theorem, there is a point x̃ = x∗ + ξ(x − x∗) on the line
segment between x and x∗ such that

f(x)− f(x∗) = f ′(x̃)(x− x∗).



Bindel, Spring 2017 Numerical Analysis (CS 4220)

Thus, we have

p(x) = −f ′(x)−1f ′(x̃)(x− x∗)
= −(x− x∗) + f ′(x)−1[f ′(x)− f ′(x̃)](x− x∗) = −(x− x∗) + d(x).

Applying the Lipschitz condition and bounded inverse assumption,

‖d(x)‖ ≤ BM‖x− x̃‖‖x− x∗‖ ≤ BM‖x− x∗‖2.

Therefore,
x+ p(x) = x∗ + d(x)

and d(x) = O(‖x − x∗‖2); that is, the iteration x 7→ x + p(x) converges
quadratically from starting points near enough x∗.

We can also see that a sufficient condition for convergence is that the
initial error is less than 1/(BM). This differs from our earlier bound of
2/(3BM) only because we assumed a uniform bound on the inverse of the
Jacobian in the relevant region rather than assuming a bound at the solution
and using the Lipschitz behavior to get everything else.

Now suppose we have an iteration

xk+1 = xk + p̂k

where p̂k is an approximation to the Newton step p(xk). Subtracting x∗ from
both sides and adding p(xk)− p(xk) to the right side gives

ek+1 = ek + p(xk)− (p(xk)− p̂k),

and taking norms gives

‖ek+1‖ ≤ BM‖ek‖2 + ‖p(xk)− p̂k‖.

Therefore, we can think of our convergence analysis in two steps: we first
analyze the error in the Newton iteration, then analyze how close our ap-
proximate Newton step is to a true Newton step.

3 Approximate Jacobians

We start with a family of iterations xk+1 = xk + p̂k where

(f ′(xk) + Ek)p̂k = −f(xk).



Bindel, Spring 2017 Numerical Analysis (CS 4220)

That is, the error in the step comes from a small error in the Jacobian. As in
our analysis of Newton, we replace the right hand side using the mean value
theorem

(f ′(xk) + Ek)p̂k = −f ′(x̃)(xk − x∗).
where x̃ lies on the segment between xk and x∗. Rearranging as before, we
have

p̂k = −ek +
(
f ′(xk) + Ek

)−1 (
f ′(xk) + Ek − f ′(x̃)

)
ek.

Therefore, the error iteration ek+1 = ek + p̂k becomes

ek+1 =
(
f ′(xk) + Ek

)−1 (
f ′(xk) + Ek − f ′(x̃)

)
ek.

Taking several bounds gives us (for B‖Ek‖ < 1),

‖ek+1‖ ≤
(
BM‖ek‖+B‖Ek‖

1−B‖Ek‖

)
‖ek‖ = O(‖ek‖2) +O(‖ek‖‖Ek‖).

The constant in parentheses is less than one if

‖ek‖ ≤ 1− 2B‖Ek‖
BM

,

which for the zero error case reverts to the bound we saw before.
How should we read these bounds? If the bound on B is large (i.e. f ′ can

be very nearly singular), then the method can blow up either if the initial
error is too big or if ‖Ek‖ can get big; after all, for ‖Ek‖ > B−1 the system
for an approximate step might be singular! We can also see issues with the
rate of convergence if f ′ moves around quickly (i.e. M is large); but this
is an issue with Newton iteration as well, and switching to an approximate
Newton iteration makes things neither better nor worse.

3.1 Chord iteration

The chord iteration is

xk+1 = xk − f ′(x0)−1f(xk).

Written in this way, the method differs from Newton in only one character
— but what a difference it makes! By re-using the Jacobian at x0 for all
steps, we degrade the progress per step, but each step becomes cheaper. In
particular, we can benefit from re-using a factorization across several steps:



Bindel, Spring 2017 Numerical Analysis (CS 4220)

1 % Given a function [f,J] = f(x) that returns the Jacobian only if
2 % it is used as a second argument, run a chord iteration starting
3 % from some initial x0
4 function [x] = chord_solve(f, x0, nsteps)
5

6 [f0,J0] = f(x0);
7 [L,U,P] = lu(J0);
8 x = x0;
9 for k = 1:nsteps

10 fx = f(x);
11 p = - U\(L\(P*fx);
12 x = x + p;
13 end

In terms of the approximate Newton framework, the chord iteration in-
volves errors ‖Ek‖ = ‖f ′(xk)− f ′(x0)‖ ≤ M‖e0‖. Therefore, the iteration is
guaranteed to converge for starting points such that ‖e0‖ < 1/(3BM), and
the error in successive iterates is bounded by.

‖ek+1‖ ≤
(
BM(‖ek‖+ ‖e0‖)

1−BM‖e0‖

)
‖ek‖ = O(‖e0‖‖ek‖).

3.2 Shamanskii iteration

The chord method involves using one approximate Jacobian forever. The
Shamanskii method involves freezing the Jacobian for m steps before getting
a new Jacobian; that is, one step of Shaminskii looks like

xk+1,0 = xk

xk+1,j+1 = xk+1,j − f ′(xk)−1f(xk+1,j)

xk+1 = xk+1,m.

Like the chord iteration, Shaminskii is guaranteed to converge for starting
points such that ‖e0‖ < 1/(3BM). The error for each iteration (from xk to
xk+1, not from xk+1,j to xk+1,j+1) satisfies

‖ek+1‖ ≤
(

2BM

1−BM‖ek‖

)
‖ek‖m+1 = O(‖ek‖m+1).

Beyond the chord and Shaminskii iterations, the idea of re-using Jacobians
occurs in several other methods.



Bindel, Spring 2017 Numerical Analysis (CS 4220)

3.3 Finite-difference Newton

So far, we have assumed that we can compute the Jacobian if we want it.
What if we just don’t want to do the calculus to compute Jacobians? A nat-
ural idea is to approximate each column of the Jacobian by a finite difference
estimate:

f ′(xk)ej ≈
f(xk + hej)− f(xk)

h

Using Lipschitz bounds on f ′ gives the error bound∥∥∥∥f ′(xk)− f(xk + hej)− f(xk)

h

∥∥∥∥ ≤Mh,

and an approximation to f ′(xk) based on finite difference approximation
would have a two norm error of at most ‖Ek‖ ≤

√
nMh. The convergence is

bounded by

‖ek+1‖ ≤
(
BM‖ek‖+

√
nBMh

1−
√
nBMh

)
‖ek‖ = O(h‖ek‖).

4 Inexact Newton

So far, we have considered approximations to the Newton step based on
approximation of the Jacobian matrix. What if we instead used the exact
Jacobian matrix, but allowed the update linear systems to be solved using
an iterative solver? In this case, there is a small residual, i.e.

f ′(xk)p̂k = −f(xk) + rk

where ‖rk‖ ≤ ηk‖f(xk)‖ (i.e. ηk is a relative residual tolerance on the solve).
In this case,

‖p̂k − p(xk)‖ = ‖f ′(xk)−1rk‖ ≤ B‖rk‖ ≤ ηkB‖f(xk)‖.

We also have that

‖f(xk)‖ = ‖f(xk)− f(x∗)‖ = ‖f ′(x̃)ek‖ ≤ C‖ek‖

where C is a bound on the norm of f ′. Thus

‖p̂k − p(xk)‖ ≤ ηkBC‖ek‖,



Bindel, Spring 2017 Numerical Analysis (CS 4220)

which we combine with the bound from the start of the notes to give

‖ek+1‖ ≤ B(M‖ek‖+ ηkC)‖ek‖ = O(‖ek‖2) +O(ηk‖ek‖).

Hence, we have the following trade-off. If we solve the systems very accurately
(ηk small), then inexact Newton will behave much like ordinary Newton.
Thus, we expect to require few steps of the outer, nonlinear iteration; but
the inner iteration (the linear solver) may require many steps to reach an
acceptable residual tolerance. In contrast, if we choose ηk to be some modest
constant independent of k, then we expect linear convergence of the outer
nonlinear iteration, but each step may run relatively fast, since the linear
systems are not solved to high accuracy.

One attractive feature of Krylov subspace solvers for the Newton system
is that they only require matrix-vector multiplies with the Jacobian — also
known as directional derivative computations. We can approximate these di-
rectional derivaties by finite differences to get a method that may be rather
more attractive than computing a full Jacobian approximation by finite dif-
ferencing. However, it is necessary to use a Krylov subspace method that
tolerates inexact matrix vector multiplies (e.g. FGMRES).


	Life beyond Newton
	Almost Newton analysis
	Approximate Jacobians
	Chord iteration
	Shamanskii iteration
	Finite-difference Newton

	Inexact Newton

