
Bindel, Spring 2017 Numerical Analysis (CS 4220)

Notes for 2017-03-31

Fixed points and contraction mappings

As discussed last time, many iterations we consider have the form

xk+1 = G(xk)

where G : Rn → Rn. We call G a contraction on Ω if it is Lipschitz with
constant less than one, i.e.

‖G(x)−G(y)‖ ≤ α‖x− y‖, α < 1.

According to the contraction mapping theorem or Banach fixed point theorem,
when G is a contraction on Ω and G(Ω) = Ω, there is a unique fixed point
x∗ ∈ Ω (i.e. a point such that x∗ = G(x∗)).

If we can express the solution of a nonlinear equation as the fixed point
of a contraction mapping, we get two immediate benefits:

• We know that a solution exists and is unique (at least, it is unique
within some Ω). This is a nontrivial advantage, as it is easy to write
nonlinear equations that have no solutions, or have continuous families
of solutions, without realizing that there is a problem.

• We have a numerical method — albeit a potentially slow one — for
computing the fixed point. We take the fixed point iteration

xk+1 = G(xk)

started from some x0 ∈ Ω, and we subtract the fixed point equation
x∗ = G(x∗) to get an iteration for ek = xk − x∗:

ek+1 = G(x∗ + ek)−G(x∗).

Using contractivity, we get

‖ek+1‖ = ‖G(x∗ + ek)−G(x∗)‖ ≤ α‖ek‖,

which implies that ‖ek‖ ≤ αk‖e0‖ → 0.

When error goes down by a factor of α at each step, we say the iteration
is linearly convergent (or geometrically convergent). The name reflects a
semilogarithmic plot of (log) error versus iteration count; if the errors lie on
a straight line, we have linear convergence. Contractive fixed point iterations
converge at least linearly, but may converge more quickly.

Bindel, Spring 2017 Numerical Analysis (CS 4220)

Newton’s method for nonlinear equations

The idea behind Newton’s method1 is to approximate a nonlinear f ∈ C1

by linearizations around successive guesses. We then get the next guess by
finding where the linearized approximation is zero. That is, we set

f(xk+1) ≈ f(xk) + f ′(xk)(xk+1 − xk) = 0,

which we can rearrange to

xk+1 = xk − f ′(xk)−1f(xk).

To emphasize that we do not want to actually form an inverse, and to set
the stage for later variations on the method, we also write the iteration as

f ′(xk)pk = −f(xk)

xk+1 = xk + pk.

Superlinear convergence

Suppose f(x∗) = 0. Taylor expansion about xk gives

0 = f(x∗) = f(xk) + f ′(xk)(x∗ − xk) + r(xk)

where the remainder term r(xk) is o(‖xk − x∗‖) = o(‖ek‖). Hence,

xk+1 = x∗ + f ′(xk)−1r(xk)

and subtracting from x∗ from both sides gives

ek+1 = f ′(xk)−1r(xk) = f ′(xk)−1o(‖ek‖)

If ‖f ′(x)−1‖ is bounded for x near x∗ and x0 is close enough, this is sufficient
to guarantee superlinear convergence. When we have a stronger condition,
such as f ′ Lipschitz, we get quadratic convergence, i.e. ek+1 = O(‖ek‖2). Of
course, this is all local theory – we need a good initial guess!

Bindel, Spring 2017 Numerical Analysis (CS 4220)

0 0.5 1

0

5

10

15
·10−2

x

v
(x

)

0 0.5 1

0

2

4

x

v
(x

)

Figure 1: Two solutions for the blow-up example.

A worked example

We now consider an example problem, a nonlinear system that comes from a
discretized PDE reaction-diffusion model describing (for example) the steady
state heat distribution in a medium going an auto-catalytic reaction. The
physics is that heat is generated in the medium due to a reaction, with
more heat where the temperature is higher. The heat then diffuses through
the medium, and the outside edges of the domain are kept at the ambient
temperature. The PDE and boundary conditions are

v,xx + exp(v) = 0, x ∈ (0, 1)

v(0) = v(1) = 0.

We discretize the PDE for computer solution by introducing a mesh xi = ih
for i = 0, . . . , N + 2 and h = 1/(N + 2); the solution is approximated by
v(xi) ≈ vi. We set v0 = vN+2 = 0; when we refer to v without subscripts,
we mean the vector of entries v1 through vN . This discretization leads to the
nonlinear system

fi(v) ≡ vi−1 − 2vi + vi+1

h2
+ exp(vi) = 0.

for i = 1, . . . , N . This equation has two solutions, shown in Figure 1 for
N = 50; physically, these correspond to stable and unstable steady-state

1You will see the method referred to as Newton’s method or Newton-Raphson. A
recent short article gives an interesting history:
http://www.math.uiuc.edu/documenta/vol-ismp/13_deuflhard-peter.
pdf

http://www.math.uiuc.edu/documenta/vol-ismp/13_deuflhard-peter.pdf
http://www.math.uiuc.edu/documenta/vol-ismp/13_deuflhard-peter.pdf

Bindel, Spring 2017 Numerical Analysis (CS 4220)

0 2 4 6 8 10 12 14
10−14

10−4

106

k

‖f
(v

k
)‖

α = 0
α = 20
α = 40

Figure 2: Newton convergence for different starting guesses.

0 10 20
103

109

1015

k

‖f
(v

k
)‖

0 0.5 1

0

10

20

30

x

v
(x

)

Figure 3: Residual history and final “solution” for α = 60.

solutions of the time-dependent version of the model.
To solve for a Newton step, we need the Jacobian of f with respect to

the variables vj is the tridiagonal matrix. We write this as

J(v) = −h−2TN + diag(exp(v))

where

TN =


2 −1
−1 2 −1

.

−1 2 −1
−1 2

 ∈ RN×N .

For an initial guess, we use vi = αxi(1 − xi) for different values of α. For
α = 0, we converge to the stable solution; for α = 20 and α = 40, we

Bindel, Spring 2017 Numerical Analysis (CS 4220)

−1 0 1 2 3 4 5 6 7 8 9 10 11 12

10−10

100

k

‖f
(v

k
)‖

FP
Newton

Figure 4: Convergence for fixed point iteration vs Newton for α = 0.

converge to the unstable solution. We eventually see quadratic convergence
in all cases, but for α = 40 there is a longer period before convergence sets
in (Figure 2). For α = 60, the method does not converge at all (Figure 3).

We can derive a Newton-like fixed point iteration from the observation
that if v remains modest, the Jacobian is pretty close to −h2TN . This gives
us the iteration

h−2TNv
k+1 = exp(vk).

In Figure 4, we compare the convergence of this fixed point iteration to
Newton’s method. The fixed point iteration does converge, but it shows the
usual linear convergence, while Newton’s method converges quadratically.

Beyond asymptotic convergence

We saw in our example that Newton’s method may indeed fail if the initial
guess is not sufficiently good. Let’s now be a little more precise about our
error analysis in order to see where Newton gets into trouble.

Let M be a Lipschitz constant on f ′ in some ball around x∗, i.e. ‖f ′(x)−
f ′(y)‖ ≤M‖x− y‖ for any points in the ball. Inside the ball, we have

‖r(x)‖ ≤ M

2
‖x− x∗‖2

and
‖f ′(x)− f ′(x∗)‖ ≤M.

Recall from earlier in the semester that a Neumann bound says if A is non-
singular and ‖A−1‖‖E‖ < 1, then ‖(A + E)−1‖ ≤ ‖A−1‖/(1 − ‖A−1‖‖E‖).

Bindel, Spring 2017 Numerical Analysis (CS 4220)

Applying this to f ′(x) and f ′(x∗), we have that if

M‖f ′(x∗)−1‖‖x− x∗‖ < 1

then

‖f ′(x)−1‖ ≤ ‖f ′(x∗)‖
1−M‖f ′(x∗)−1‖‖x− x∗‖

.

Plugging this into our error iteration, we have that if

γk = M‖f ′(x∗)−1‖‖ek‖ < 1

then
‖ek+1‖ ≤ γk

2(1− γk)
‖ek‖

Putting everything together, we have that if γk < 2/3, then ‖ek+1‖ < ‖ek‖
(and γk+1 < γk). Therefore, we can guarantee convergence of Newton if the
initial error satisfies

‖e0‖ < 2

3M‖f ′(x∗)−1‖
.

The radius of guaranteed convergence will be small if f ′(x∗) is very close to
singular or if f ′(x) can change very quickly (M large). Of course, this is
only a bound! In practice, the quickest way to see if Newton converges for a
particular problem is to try and see what happens.

The bound we gave is somewhat unsatisfactory in that it involves the
norm of f ′(x∗)−1, and we do not know f ′(x∗) a priori. A slightly more subtle
argument due to Kantorovich shows that Newton converges to a zero of f
close to the initial guess under some conditions on f ′(x0) and f(x0), along
with a Lipschitz condition on f ′(x).

Newton’s method for optimization

We now turn to using Newton’s method to solve optimization problems. We
can approach this in two ways: either by applying Newton’s method to solve
the critical point equations or by developing the method directly from the
optimization problem. We will follow the latter approach.

Suppose f : Rn → R is C2, and x∗ is a (strong) local minimizer of f . We
want a sequence of points xk that converge to x∗, assuming the initial guess

Bindel, Spring 2017 Numerical Analysis (CS 4220)

x0 is good enough. As with solving nonlinear equations, our approach will
be to approximate f locally by a Taylor expansion:

f(xk + z) ≈ f(xk) + f ′(xk)z +
1

2
zTH(xk)z

Assuming H(xk) is positive definite, the quadratic approximation has a min-
imum at z = −H(xk)−1∇f(xk). This gives us the Newton update

xk+1 = xk −H(xk)−1∇f(xk).

This is the same update we would get by applying Newton to the critical
point equations.

Newton’s method for optimization is special in that there is more struc-
ture in the critical point equations than there is for a nonlinear system of
equations. For example, if xk is sufficiently close to a strong local minimum,
then H(xk) is guaranteed to be positive definite. Not only does this mean
we can use Cholesky (rather than LU) to solve the Newton update system,
but the update

p = −H(xk)−1∇f(xk)

has the property that

∇f(xk)Tp = −pTH(xk)p < 0,

i.e. moving in the direction of p decreases the objective function. That is,
if H(xk) is positive definite, then p is a descent direction. Of course, just
because p points in a downhill direction does not necessarily mean that the
Newton step will reduce the objective function value – if we take a full Newton
step, we may move so far that the Taylor expansion ceases to give good
information

Some practical issues

In general, there is no guarantee that a given solution of nonlinear equations
will have a solution; and if there is a solution, there is no guarantee of unique-
ness. This has a practical implication: many incautious computationalists
have been embarrassed to find that they have “solved” a problem that was
later proved to have no solution!

Bindel, Spring 2017 Numerical Analysis (CS 4220)

When we have reason to believe that a given system of equations has a
solution — whether through mathematical argument or physical intuition —
we still have the issue of finding a good enough initial estimate that Newton’s
method will converge. In coming lectures, we will discuss “globalization”
methods that expand the set of initial guesses for which Newton’s method
converges; but globalization does not free us from the responsibility of trying
for a good guess. Finding a good guess helps ensure that our methods will
converge quickly, and to the “correct” solution (particularly when there are
multiple possible solutions).

We saw one explicit example of the role of the initial guess in our analysis
of the discretized blowup PDE problem. Another example occurs when we
use unguarded Newton iteration for optimization. Given a poor choice of
initial guess, we are as likely to converge to a saddle point or a local maximum
as to a minimum! But we will address this pathology in our discussion of
globalization methods.

If we have a nice problem and an adequate initial guess, Newton’s itera-
tion can converge quite quickly. But even then, we still have to think about
when we will be satisfied with an approximate solution. A robust solver
should check a few possible termination criteria:

• Iteration count: It makes sense to terminate (possibly with a diag-
nostic message) whenever an iteration starts to take more steps than
one expects — or perhaps more steps than one can afford. If nothing
else, this is necessary to deal with issues like poor initial guesses.

• Residual check: We often declare completion when ‖f(xk)‖ is suffi-
ciently close to zero. What is “close to zero” depends on the scaling
of the problem, so users of black box solvers are well advised to check
that any default residual checks make sense for their problems.

• Update check: Once Newton starts converging, a good estimate for
the error at step xk is xk+1 − xk. A natural test is then to make sure
that ‖xk+1 − xk‖/‖xk+1‖ < τ for some tolerance τ . Of course, this is
really an estimate of the relative error at step k, but we will report the
(presumably better) answer xk+1 — like anyone else who can manage
it, numerical analysts like to have their cake and eat it, too.

A common problem with many solvers is to make the termination criteria
too lax, so that a bad solution is accepted; or too conservative, so that good
solutions are never accepted.

Bindel, Spring 2017 Numerical Analysis (CS 4220)

One common mistake in coding Newton’s method is to goof in computing
the Jacobian matrix. This error is not only very common, but also very
often overlooked. After all, a good approximation to the Jacobian often still
produces a convergent iteration; and when iterations diverge, it is hard to
distinguish between problems due to a bad Jacobian and problems due to
a bad initial guess. However, there is a simple clue to watch for that can
help alert the user to a bad Jacobian calculation. In most cases, Newton
converges quadratically, while “almost Newton” iterations converge linearly.
If you think you have coded Newton’s method and a plot of the residuals
shows linear behavior, look for issues with your Jacobian code!

Bindel, Spring 2017 Numerical Analysis (CS 4220)

Addendum: blow-up solver codes

Newton code

1 function [v,x,rhist] = blowup(alpha)
2

3 % -- Number of (interior) mesh points and mesh spacing
4 N = 50; % Number of (interior) mesh points
5 h = 1/(N+1); % Mesh spacing
6 x = linspace(0,1,N+2)’; % Mesh points
7

8 % -- Initial guess
9 v = alpha .* x .* (1-x);

10

11 % -- Set up some things for solver
12 e = ones(N,1); % Vector of ones
13 rhist = []; % Residual history
14

15 % Newton loop (fixed number of steps)
16 for k = 1:20
17

18 % Compute residual vector and record norm
19 r = (v(1:N)-2*v(2:N+1)+v(3:N+2))/hˆ2 + exp(v(2:N+1));
20 rhist(k) = norm(r);
21

22 % Form (sparse) Jacobian
23 J = spdiags([e/hˆ2, exp(v(2:N+1))-2/hˆ2, e/hˆ2], -1:1, N,N);
24

25 % Compute Newton update
26 p = J\r;
27 v(2:N+1) = v(2:N+1)-p;
28

29 % Quit if we are making small changes
30 if norm(p) / norm(v) < 1e-10, break; end
31 end

Bindel, Spring 2017 Numerical Analysis (CS 4220)

Fixed point code

1 function [v,x,rhist] = blowupfp(alpha)
2

3 % -- Number of (interior) mesh points and mesh spacing
4 N = 50; % Number of (interior) mesh points
5 h = 1/(N+1); % Mesh spacing
6 x = linspace(0,1,N+2)’; % Mesh points
7

8 % -- Initial guess
9 v = alpha .* x .* (1-x);

10

11 % -- Set up some things for solver
12 e = ones(N,1); % Vector of ones
13 rhist = []; % Residual history
14

15 L = spdiags([-e/hˆ2, 2*e/hˆ2, -e/hˆ2], -1:1, N,N);
16

17 % Newton loop (fixed number of steps)
18 for k = 1:12
19

20 % Compute residual vector and record norm
21 r = (v(1:N)-2*v(2:N+1)+v(3:N+2))/hˆ2 + exp(v(2:N+1));
22 rhist(k) = norm(r);
23

24 % Compute fixed point update
25 v(2:N+1) = L\exp(v(2:N+1));
26 end

