
Bindel, Spring 2017 Numerical Analysis (CS 4220)

Notes for 2017-03-24

1 Extrapolation: A Hint of Things to Come

Stationary iterations are simple. Methods like Jacobi or Gauss-Seidel are
easy to program, and it’s (relatively) easy to analyze their convergence. But
these methods are also often slow. We’ll talk next time about more powerful
Krylov subspace methods that use stationary iterations as a building block.

There are many ways to motivate Krylov subspace methods. We’ll pick
one motivating idea that extends beyond the land of linear solvers and into
other applications as well. The key to this idea is the observation that the
error in our iteration follows a simple pattern:

x(k) − x = e(k) = Rke(0), R = M−1N.

For large k, the behavior of the error is dominated by the largest eigenvalue
and the associated eigenvector1, i.e.

e(k+1) ≈ λ1e
(k).

Note that this means

x(k) − x(k+1) = e(k) − e(k+1) ≈ (1− λ1)e(k).

If we have an estimate for λ1, we can write

x = x(k) − e(k) ≈ x(k) − x(k) − x(k+1)

1− λ1
.

That is, we might hope to get a better estimate of x than is provided by x(k)

or x(k+1) individually by taking an appropriate linear combination of x(k)

and x(k+1). This idea generalizes: if we have a sequence of approximations
x(0), . . . , x(k), why not ask for the “best” approximation that can be written
as a linear combination of the x(j)? This is the notion underlying methods
such as the conjugate gradient iteration, which we will discuss shortly.

1If you don’t understand this now, you will when we talk about the power method in
a week or so!

Bindel, Spring 2017 Numerical Analysis (CS 4220)

2 The Big Picture

We now start with our discussion of Krylov subspace methods in general,
and the famous method of conjugate gradients (CG) in particular. Though
this is the iterative method of choice for most positive definite systems, it
may be as famously confusing as it is famous2. In order to avoid getting lost
in the weeds, it seems worthwhile to start with a roadmap:

• We begin with the observation that if vectors x(0), . . . , x(k) are increas-
ingly good approximations to x, then some linear combination of these
vectors may produce an even better approximation. If the original
sequence is produced by a stationary iteration, these vectors span a
Krylov subspace.

• One can generally show that a big enough Krylov subspace will contain
a good approximation to x. Alas, this does not tell us how to find which
vector in the space is best (or even good)! Attempting to minimize the
norm of the error is usually impossible, but it is possible to minimize the
residual (leading to GMRES or MINRES), an energy function (CG),
or some other error-related quantity.

• The basic framework of a Krylov subspace plus a method of choosing
approximations from the space allows us to describe some theoretical
properties of several iterations without telling us why (or if) we can
implement them efficiently and stably. A key practical point is the
computation of well-conditioned bases for the Krylov subspaces, e.g.,
using the Lanczos algorithm (symmetric case) or the Arnoldi algorithm
(nonsymmetric case).

3 From Stationary Methods to Krylov Sub-

spaces

Earlier in these notes, we tried to motivate the idea that we can improve the
convergence of a stationary method by replacing the sequence of guesses

x0, x1, . . .→ x

2See, e.g., “Introduction to the Conjugate Gradient Method Without the Agonizing
Pain” by Jonathan Shewchuk.

Bindel, Spring 2017 Numerical Analysis (CS 4220)

with linear combinations

x̃k =
k∑
j=1

αkjx
j.

We could always choose αkj to be one for k = j and zero otherwise, in which
case we have the original stationary method; but by choosing the coefficients
more carefully, we might do better.

We’ve so far written stationary methods as

Mxj+1 = Nxj + b.

This is equivalent to

xj+1 = xj +M−1rj, rj ≡ b− Axj,

or
xj+1 = Rxj +M−1b

where R = I − M−1A is the iteration matrix we’ve seen in our previous
analysis. If x0 = M−1b, this gives

xj =

j∑
i=1

RiM−1b.

If we look at this expression closely, we might notice that the space spanned
by the first k iterates of the stationary method is all vectors of the form

j∑
i=0

ciR
iM−1b.

If we look a little harder, we might observe that this is equivalent to the
space of all vectors of the form

j∑
i=0

ci(M
−1A)iM−1b = p(M−1A)M−1b

where p(z) =
∑j

i=1 ciz
i is a polynomial of degree at most j.

In general, the d-dimensional Krylov subspace generated by a matrix A
and vector B is

Kd(A, b) = span{b, Ab,A2b, . . . , Ad−1b}
= {p(A)b : p ∈ Pd−1}.

Bindel, Spring 2017 Numerical Analysis (CS 4220)

As we have just observed, the iterates of a stationary method form a basis for
nested Krylov subspaces generated by M−1A and M−1b. If the stationary
method converges, we know the Krylov subspaces will eventually contain
pretty good approximations to A−1b. Let’s now spell this out a little more
carefully.

4 The Power of Polynomials

We showed a moment ago that the first m iterates of a stationary method
form a basis for the space

Km+1(R,M
−1b) = Km+1(M

−1A,M−1b)

What can we say about the quality of this space for approximation? As
it turns out, this turns into a question about polynomial approximations.
We will not spell out all the details (nor will this appear on any exams or
homework problems for this class), but it’s worth spending a few moments
giving an idea of what happens.

We have seen that the iterates of the stationary method are

x(k) = x+ e(k) = x+Rke(0)

We would like to take a linear combination

x̃(m) =
m∑
k=0

γmkx
(k) = pm(1)x+ pm(R)e(0)

where pm(z) =
∑d

k=0 γmkz
k. Moreover, if R is diagonalizable with R =

V ΛV −1, then
pm(R) = V p(Λ)V −1.

For any pm with pm(1) = 1, we have

‖ẽ(m)‖ = ‖x̃(m) − x‖
= ‖pm(R)e(0)‖ = ‖V p(Λ)V −1e(0)‖
≤ κ(V) max

λj
|p(λj)|‖e(0)‖.

Hence, we would really like to choose the polynomial that is one at 1 and as
small as possible on each of the eigenvalues.

Bindel, Spring 2017 Numerical Analysis (CS 4220)

If all eigenvalues λj of R are real, then we have

max
λj
|p(λj)| ≤ max

|z|<ρ(R)
|p(z)|,

and a reasonable way to choose polynomials is to minimize |pm(z)| on [−ρ(R), ρ(R)]
subject to the constraint pm(1) = 1. The solution to this problem is the scaled
Chebyshev polynomials, with which we can show that the optimal pm satisfies

pm(z) ≤ 2

1 +m
√

2/(1− ρ(R))

= 2(1−m
√

2(1− ρ(R))) +O(m2(1− ρ(R)).

While the number of steps for the basic stationary iteration to reduce the
error by a fixed amount scales roughly like (1−ρ(R))−1, the number of steps
to reduce the bound on the optimal error scales like (1− ρ(R))−1/2.

While the Chebyshev bounds are correct, and involve a beautiful bit of
approximation theory, they are limited. For one thing, they fall apart on
non-normal matrices with complex spectra. Even in the SPD case, these
bounds are often highly pessimistic in practice. When the eigenvalues of
R come in clusters, a relatively low degree polynomial can do a good job
of approximating λ−1 at each of the clusters, and hence a relatively low-
dimensional Krylov subspace may provide excellent solutions.

All of this is to say that the detailed convergence theory for Krylov sub-
space methods can be quite complicated, but understanding a little about
the eigenvalues of the problem can provide at least a modicum of insight.

For theoretical work, we are fine writing Krylov subspaces as polynomials
in R applied to M−1b. In practical computations, though, we need a basis.
Because the iterates of the stationary method are converge to x, they tend
to form a very ill-conditioned basis. We would like to keep the same Krylov
subspace, but have a different basis – say, for instance, an orthonormal basis.
We turn to this task next.

5 The Lanczos Idea

What is good about the “power basis” for a Krylov subspace? That is, why
might we like to write

Km(A, b) = span{b, Ab,A2b, . . . , Am−1b}

Bindel, Spring 2017 Numerical Analysis (CS 4220)

rather than choosing a different basis? Though it’s terrible for numerical
stability, there are two features of the basis that are attractive:

• The power bases span nested Krylov subspaces. Given the vectors
b, . . . , Am−1b spanning Km(A, b), we only need one more vector (Adb)
to span Km+1(A, b).

• Each successive vector can be computed from the previous vector with
a single multiplication by A. There is no other overhead.

While we dislike the power basis from the perspective of stability, we would
like to keep these attractive features for any alternative basis.

We’ve already described one approach to converting the vectors in a power
basis into a more convenient set of vectors. Define the matrix

X(m) =
[
b Ab A2b . . . Am−1b

]
and consider the economy QR decomposition

X(m) = Q(m)R(m), Q(m) =
[
q1 q2 . . . qm

]
.

The columns of Q(m) are orthonormal and for any k ≤ m, the first k columns
of Q(m) span the same space as the first k columns of X(m). But forming
X(m) and running QR is unattractive for two reasons. First, a dense QR
decomposition may involve a nontrivial amount of extra work, particularly
as m gets large; and second, simply forming the rounded version of X(m) is
enough to get us into numerical trouble, even if we were able to run QR with
no additional rounding errors. We need a better approach.

One helpful observation is that

R(AQ(k)) = R(AX(k)) ⊆ R(X(k+1)) = R(Q(k+1)).

That is, Aqk can always be written as a linear combination of q1, . . . , qk+1.
In matrix terms, this means we can write

AQ(k) = Q(k+1)H̄(k)

Bindel, Spring 2017 Numerical Analysis (CS 4220)

where

H̄(m) =



h11 h12 h13 . . . h1,k−1 h1k
h21 h22 h23 h2,k−1 h2k
0 h32 h33 h3,k−1 h3k

0 h43 h4,k−1 h4k
.

...
...

0 hk,k−1 hkk
0 hk+1,k


.

A matrix with this structure (all elements below the first subdiagonal equal
to zero) is called upper Hessenberg. Alternately, we write

AQ(k) = Q(k)H(k) + qk+1hk+1,k

where H(k) is the square matrix consisting of all but the last row of H̄(k).
This formula is sometimes called an Arnoldi decomposition; it turns out to
be crucial in the development of GMRES, one of the most popular iterative
solvers for nonsymmetric linear systems. For the moment, though, we want
to focus on the symmetric case, and so we will move on.

When A is symmetric, we have that

(Q(k))TAQ(k) = H(k)

is also symmetric, as well as being upper Hessenberg; in this case, the matrix
H(k) is actually tridiagonal, and we write H(k) as T (k) to emphasize this fact.
Conventionally, T (k) is written as

T (k) =


α1 β1
β1 α2 β2

β2 α3
. . .

. βk−1
βk−1 αk

 .

Converting from matrix notation back into vector notation, we have

Aqk = βk−1qk−1 + αkqk + βkqk+1,

which we can rearrange as

βkqk+1 = Aqk − αkqk − βk−1qk−1.

Bindel, Spring 2017 Numerical Analysis (CS 4220)

where

αk = qTkAqk

βk−1 = qTkAqk−1 = qTk−1Aqk.

Putting everything together, we have the Lanczos iteration, in which we ob-
tain each successive vector qk+1 by forming Aqk, orthogonalizing against the
qk and qk−1 by Gram-Schmidt, and normalizing. We saw this iteration ear-
lier in the semester when we talked about eigenvalue problems and compared
different methods of matrix tridiagonalization.

Presented as a fait accompli, the Lanczos iteration looks like magic. It
seems even more like magic when one realizes that despite an instability in
the iteration (because of the use of Gram-Schmidt for orthonormalization at
each step), the iteration still produces useful information in floating point.
The Lanczos iteration is the basis for one of the most popular iterative meth-
ods for solving eigenvalue problems, and in that setting it is important to
acknowledge and deal with the instability in the method. For the moment,
though, we are still interested in solving linear systems, and the method of
Conjugate Gradients (also built on Lanczos) turns out to still work great.

5.1 Addendum: Three-Term Recurrences

The Lanczos iteration allows us to generate a sequence of orthonormal vec-
tors using a three-term recurrence. As it turns out, the same approach leads
to three-term recurrences that generate families of orthogonal polynomials,
including the Chebyshev polynomials mentioned in passing earlier and the
Legendre polynomials that play a significant role in the development of Gaus-
sian quadrature. I consider the details beyond of these connections to be
beyond the scope of the current class. But the connections are too beautiful
and numerous to not mention that they exist. I would hate for you to walk
away from this class with the impression that the mathematical development
of the Lanczos iteration is only some quirky trick in numerical linear algebra
that gets you part of the way to CG.

Bindel, Spring 2017 Numerical Analysis (CS 4220)

6 From Lanczos to CG

We developed the Lanczos iteration, which for a symmetric matrix A implic-
itly generates the decomposition

AQ(k) = Q(k)T (k) + βkqk+1

where T (k) is a tridiagonal matrix with α1, . . . , αk on the diagonal and β1, . . . , βk−1
on the subdiagonal and superdiagonal. The columns of Q(k) form an or-
thonormal basis for the Krylov subspace Kk(A, b), and are a numerically
superior alternative to the power basis. We now turn to using this decompo-
sition to solve linear systems.

The conjugate gradient algorithm can be characterized as a method that
chooses an approximation x̃(k) ∈ Kk(A, b) by minimizing the energy function

φ(z) =
1

2
zTAz − zT b

over the subspace. Writing x̃(k) = Q(k)u, and using the fact that

(Q(k))TAQ(k) = T (k)

(Q(k))T b = ‖b‖e1

we have

φ(Q(k)u) =
1

2
uTT (k)u− ‖b‖uT e1.

The stationary equations in terms of u are then

T (k)u = ‖b‖e1.

In principle, we could solve find the CG solution by forming and solving
this tridiagonal system at each step, then taking an appropriate linear com-
bination of the Lanczos basis vectors. Unfortunately, this would require that
we keep around the Lanczos vectors, which eventually may take quite a bit
of storage. This is essentially what happens in methods like GMRES, but
for the method of conjugate gradients, we have not yet exhausted our supply
of cleverness. It turns out that we can derive a short recurrence relating the
solutions at consecutive steps and their residuals. There are several different
ways to this recurrence: one can work from a factorization of the nested tridi-
agonal matrices T (k), or work out the recurrence based on the optimization

Bindel, Spring 2017 Numerical Analysis (CS 4220)

interpretation of the problem (this leads to the name “conjugate gradients”).
For a detailed discussion, my preferred reference is Templates for the So-
lution of Linear Systems, a short book available from SIAM which is also
freely available online. The paper “Introduction to the Conjugate Gradient
Method Without the Agonizing Pain” provides a longer and possibly gentler
introduction.

	Extrapolation: A Hint of Things to Come
	The Big Picture
	From Stationary Methods to Krylov Subspaces
	The Power of Polynomials
	The Lanczos Idea
	Addendum: Three-Term Recurrences

	From Lanczos to CG

