
Bindel, Spring 2017 Numerical Analysis (CS 4220)

Notes for 2017-02-03

Binary floating point

Why do we study conditioning of problems? One reason is that we may have
input data contaminated by noise, resulting in a bad solution even if the
intermediate computations are done perfectly accurately. But our concern
in this class is less with measurement errors and more with numerics, and so
we will study condition numbers with an eye to floating point error analysis.

Binary floating point arithmetic is essentially scientific notation. Where
in decimal scientific notation we write

1

3
= 3.333 . . .× 10−1,

in floating point, we write

(1)2
(11)2

= (1.010101 . . .)2 × 2−2.

Because computers are finite, however, we can only keep a finite number of
bits after the binary point.

In general, a normal floating point number has the form

(−1)s × (1.b1b2 . . . bp)2 × 2E,

where s ∈ {0, 1} is the sign bit, E is the exponent, and (1.b2 . . . bp)2 is the
significand. In the 64-bit double precision format, p = 52 bits are used to
store the significand, 11 bits are used for the exponent, and one bit is used
for the sign. The valid exponent range for normal floating point numbers is
−1023 < E < 1024; this leaves two exponent encodings left over for special
purpose. One of these special exponents is used to encode subnormal numbers
of the form

(−1)s × (0.b1b2 . . . bp)2 × 2−1022;

the other special exponent is used to encode ±∞ and NaN (Not a Number).
For a general real number x, we will write

fl(x) = correctly rounded floating point representation of x.

Bindel, Spring 2017 Numerical Analysis (CS 4220)

By default, “correctly rounded” means that we find the closest floating point
number to x, breaking any ties by rounding to the number with a zero in
the last bit1. If x exceeds the largest normal floating point number, then
fl(x) =∞.

Basic floating point arithmetic

For basic operations (addition, subtraction, multiplication, division, and
square root), the floating point standard specifies that the computer should
produce the true result, correctly rounded. So the MATLAB statement

1 % Compute the sum of x and y (assuming they are exact)
2 z = x + y;

actually computes the quantity ẑ = fl(x+y). If ẑ is a normal double-precision
floating point number, it will agree with the true z to 52 bits after the binary
point. That is, the relative error will be smaller in magnitude than the
machine epsilon εmach = 2−53 ≈ 1.1× 10−16:

ẑ = z(1 + δ), |δ| < εmach.

More generally, basic operations that produce normalized numbers are cor-
rect to within a relative error of εmach. The floating point standard also rec-
ommends that common transcendental functions, such as exponential and
trig functions, should be correctly rounded, though compliant implementa-
tions that do not comply with this recommendation may produce results with
a relative error just slightly larger than εmach.

The fact that normal floating point results have a relative error less than
εmach gives us a useful model for reasoning about floating point error. We
will refer to this as the “1 + δ” model. For example, suppose x is an exactly-
represented input to the MATLAB statement

1 z = 1-x*x;

1There are other rounding modes beside the default, but we will not discuss them in
this class

Bindel, Spring 2017 Numerical Analysis (CS 4220)

We can reason about the error in the computed ẑ as follows:

t1 = fl(x2) = x2(1 + δ1)

t2 = 1− t1 = (1− x2)
(

1 +
δ1x

2

1− x2

)
ẑ = fl(1− t1) = z

(
1 +

δ1x
2

1− x2

)
(1 + δ2)

≈ z

(
1 +

δ1x
2

1− x2
+ δ2

)
,

where |δ1|, |δ2| ≤ εmach. As before, we throw away the (tiny) term involving
δ1δ2. Note that if z is close to zero (i.e. if there is cancellation in the sub-
traction), then the model shows the result may have a large relative error.

Exceptions

We say there is an exception when the floating point result is not an ordinary
value that represents the exact result. The most common exception is inexact
(i.e. some rounding was needed). Other exceptions occur when we fail to
produce a normalized floating point number. These exceptions are:

Underflow: An expression is too small to be represented as a normalized
floating point value. The default behavior is to return a subnormal.

Overflow: An expression is too large to be represented as a floating point
number. The default behavior is to return inf.

Invalid: An expression evaluates to Not-a-Number (such as 0/0)

Divide by zero: An expression evaluates “exactly” to an infinite value (such
as 1/0 or log(0)).

When exceptions other than inexact occur, the usual “1 + δ” model used for
most rounding error analysis is not valid.

Finding and fixing floating point problems

Floating point arithmetic is not the same as real arithmetic. Even simple
properties like associativity or distributivity of addition and multiplication

Bindel, Spring 2017 Numerical Analysis (CS 4220)

only hold approximately. Thus, some computations that look fine in exact
arithmetic can produce bad answers in floating point. What follows is a (very
incomplete) list of some of the ways in which programmers can go awry with
careless floating point programming.

Cancellation

If x̂ = x(1 + δ1) and ŷ = y(1 + δ2) are floating point approximations to x and
y that are very close, then fl(x̂ − ŷ) may be a poor approximation to x − y
due to cancellation. In some ways, the subtraction is blameless in this tail:
if x and y are close, then fl(x̂ − ŷ) = x̂ − ŷ, and the subtraction causes no
additional rounding error. Rather, the problem is with the approximation
error already present in x̂ and ŷ.

The standard example of loss of accuracy revealed through cancellation
is in the computation of the smaller root of a quadratic using the quadratic
formula, e.g.

x = 1−
√

1− z

for z small. Fortunately, some algebraic manipulation gives an equivalent
formula that does not suffer cancellation:

x =
(
1−
√

1− z
)(1 +

√
1− z

1 +
√

1− z

)
=

z

1 +
√

1− z
.

Sensitive subproblems

We often solve problems by breaking them into simpler subproblems. Un-
fortunately, it is easy to produce badly-conditioned subproblems as steps to
solving a well-conditioned problem. As a simple (if contrived) example, try
running the following MATLAB code:

1 x = 2;
2 for k = 1:60, x = sqrt(x); end
3 for k = 1:60, x = xˆ2; end
4 disp(x);

In exact arithmetic, this should produce 2, but what does it produce in
floating point? In fact, the first loop produces a correctly rounded result, but
the second loop represents the function x2

60
, which has a condition number

far greater than 1016 — and so all accuracy is lost.

Bindel, Spring 2017 Numerical Analysis (CS 4220)

Unstable recurrences

We gave an example of this problem in the last lecture notes when we looked
at the recurrence

E0 = 1− 1/e

En = 1− nEn−1, n ≥ 1.

No single step of this recurrence causes the error to explode, but each step
amplifies the error somewhat, resulting in an exponential growth in error.

Undetected underflow

In Bayesian statistics, one sometimes computes ratios of long products. These
products may underflow individually, even when the final ratio is not far from
one. In the best case, the products will grow so tiny that they underflow to
zero, and the user may notice an infinity or NaN in the final result. In the
worst case, the underflowed results will produce nonzero subnormal numbers
with unexpectedly poor relative accuracy, and the final result will be wildly
inaccurate with no warning except for the (often ignored) underflow flag.

Bad branches

A NaN result is often a blessing in disguise: if you see an unexpected NaN,
at least you know something has gone wrong! But all comparisons involving
NaN are false, and so when a floating point result is used to compute a branch
condition and an unexpected NaN appears, the result can wreak havoc. As
an example, try out the following code in MATLAB.

1 x = 0/0;
2 if x < 0 then disp(’x is negative’);
3 elseif x >= 0 then disp(’x is non-negative’);
4 else disp(’Uh...’);
5 end

Limits of the “1 + δ” model

Apart from the fact that it fails when there are exceptions other than inex-
act, the “1 + δ” model of floating point does not reflect the fact that some
computations involve no rounding error. For example:

Bindel, Spring 2017 Numerical Analysis (CS 4220)

• If x and y are floating point numbers within a factor of two of each
other, fl(x− y) is computed without rounding error.

• Barring overflow or underflow to zero, fl(2x) = 2x and fl(x/2) = x/2.

• Integers between ±(253 − 1) are represented exactly.

These properties of floating point allow us to do some clever things, such as
using ordinary double precision arithmetic to simulate arithmetic with about
twice the number of digits. You should be aware that these tricks exist, even
if you never need to implement them – otherwise, I may find myself cursing
a compiler you wrote for rearranging the computations in a floating point
code that I wrote!

Let’s consider an example analysis that illustrates both the usefulness
and the limitations of the 1 + δ model. Suppose I have points A, B, and C
in the box [1, 2]2, and that the coordinates are given as exact floating point
numbers. I want to determine whether C is above, below, or on the oriented
line going through A and B. The usual way to do this is by looking at the
sign of

det

[
Bx − Ax Cx − Ax
By − Ay Cy − Ay

]
.

We might compute this determinant as something like this:

t1 = Bx − Ax
t2 = By − Ay
t3 = Cx − Ax
t4 = Cy − Ay
t5 = t1 × t4
t6 = t2 × t3
t7 = t5 − t6.

Now, suppose we do this computation in floating point. We will call the
floating point results t̂j, to distinguish them from the exact results. According

Bindel, Spring 2017 Numerical Analysis (CS 4220)

to the 1 + δ model, we have |δi| ≤ ε so that

t̂1 = (Bx − Ax)(1 + δ1)

t̂2 = (By − Ay)(1 + δ2)

t̂3 = (Cx − Ax)(1 + δ3)

t̂4 = (Cy − Ay)(1 + δ4)

t̂5 = (t̂1 × t̂4)(1 + δ5) = (t1 × t4)(1 + δ1)(1 + δ4)(1 + δ5) = t5(1 + γ5)

t̂6 = (t̂2 × t̂3)(1 + δ6) = (t2 × t3)(1 + δ2)(1 + δ3)(1 + δ6) = t6(1 + γ6)

t̂7 = (t̂5 − t̂6)(1 + δ7)

= (t5 − t6)
(

1 +
t5γ5 − t6γ6
t5 − t6

)
(1 + δ7).

Here, 1 + γ5 = (1 + δ1)(1 + δ2)(1 + δ3) = 1 + δ1 + δ2 + δ3 + O(ε2); that is,
|γ5| . 3ε. Similarly, |γ6| . 3ε.

Now, how large can the relative error in t̂7 be? Ignoring the final rounding
error δ7 – which is in this case insignficant – we have that the relative error
is bounded by ∣∣∣∣t5γ5 − t6γ6t5 − t6

∣∣∣∣ ≤ 3ε
|t5|+ |t6|
|t5 − t6|

.

If t5 and t6 are not small but t5− t6 is small, the relative error in t7 could be
quite large – even though the absolute error remains small. This effect of a
large relative error due to a small result in a subtraction is called cancellation.
In this case, if the relative error is one or larger, then we don’t even necessarily
have the right sign! That’s not a good thing for our test.

Is this error analysis pessimistic? Yes and no. Some things in floating
point are exact, such as multiplication by a power of two or subtraction of
two numbers within a factor of two of each other. Thus, there will be no
rounding error in the first four steps (δi = 0 for i = 1, 2, 3, 4), since we
have constrained each of the coordinates to lie in the interval [1, 2]. Note
that this means that if t5 and t6 are close to each other, there will be no
rounding error in the last step – δ7 will be zero! But the overall outlook
remains grim: the rounding errors in the multiplications are generally really
there; and even if the subtraction is done exactly, it is the propogated error
from the multiplication steps that destroys the relative accuracy of the final
results.

For this computation, then, the critical rounding error is really in the
multiplications. If we could do those multiplications exactly, then we would

Bindel, Spring 2017 Numerical Analysis (CS 4220)

be able to compute the desired determinant to high relative accuracy (and
thus reliably test the determinant’s sign). As it turns out, we can perform
the multiplication exactly if we use a higher precision for intermediate com-
putations than for the input data. For example, suppose the input data are
in single precision, but the intermediate computations are all performed in
double precision. Then t1 through t4 can be represented with significands
that are at most 24 bits, and the products t5 and t6 require at most 48 bits
– and can thus be exactly represented as double precision numbers with 53
bits in the significand.

For this computation, we see a payoff by doing a more detailed analysis
than is possible with only the 1 + δ model. But the details were tedious, and
analysis with the 1 + δ model will usually be good enough.

Problems to ponder

1. How do we accurately evaluate
√

1 + x−
√

1− x when x� 1?

2. How do we accurately evaluate ln
√
x+ 1− ln

√
x when x� 1?

3. How do we accurately evaluate (1− cos(x))/ sin(x) when x� 1?

4. How would we compute cos(x)− 1 accurately when x� 1?

5. The Lamb-Oseen vortex is a solution to the 2D Navier-Stokes equation
that plays a key role in some methods for computational fluid dynamics.
It has the form

vθ(r, t) =
Γ

2πr

(
1− exp

(
−r2

4νt

))
How would one evaluate v(r, t) to high relative accuracy for all values
of r and t (barring overflow or underflow)?

6. For x > 1, the equation x = cosh(y) can be solved as

y = − ln
(
x−
√
x2 − 1

)
.

What happens when x = 108? Can we fix it?

Bindel, Spring 2017 Numerical Analysis (CS 4220)

7. The difference equation

xk+1 = 2.25xk − 0.5xk−1

with starting values

x1 =
1

3
, x2 =

1

12

has solution

xk =
41−k

3
.

Is this what you actually see if you compute? What goes wrong?

8. Considering the following two MATLAB fragments:

1 % Version 1
2 f = (exp(x)-1)/x;
3

4 % Version 2
5 y = exp(x);
6 f = (1-y)/log(y);

In exact arithmetic, the two fragments are equivalent. In floating point,
the first formulation is inaccurate for x � 1, while the second formu-
lation remains accurate. Why?

9. Running the recurrence En = 1− nEn−1 forward is an unstable way to
compute

∫ 1

0
xnex−1 dx. However, we can get good results by running

the recurrence backward from the estimate En ≈ 1/(N + 1) starting at
large enough N . Explain why. How large must N be to compute E20

to near machine precision?

10. How might you accurately compute this function for |x| < 1?

f(x) =
∞∑
j=0

(
cos(xj)− 1

)

