CS 4220: Final Exam Solutions

May 14, 2013

1. (10 points)

(a) A 3-by-3 linear system with infinity-norm condition 10^{8} is solved via the MATLAB backslash operator \backslash on a computer with unit roundoff 10^{-17}. Here is the computed solution:

```
xHat(1) = 1234.5678901234567
xHat(2) = 1.2345678901234567
xHat(3) = .00012345678901234567
```

Underline the digits that are most likely correct and justify your answer by explaining how the relative error $\|\hat{x}-x\|_{\infty} /\|x\|_{\infty}$ depends on both the condition and the unit roundoff. Recall that $\|v\|_{\infty}=\max \left|v_{i}\right|$.

Solution (5 points)
Since

$$
\frac{\|\hat{x}-x\|_{\infty}}{\|x\|_{\infty}} \approx \operatorname{cond}_{\infty}(A) \mathrm{eps}
$$

we have for this example that

$$
\left.\left|\hat{x}_{i}-x_{i}\right| \leq\|\hat{x}-x\|_{\infty} \leq \operatorname{cond}_{\infty}(A) \operatorname{eps}\|x\|_{\infty} \approx 10^{8}\right)\left(10^{-17}\right)\left(10^{3}\right) \approx 10^{-6}
$$

So underline each component value through the sixth decimal place.
-2 if you underline 6 significant digits in each component. The basic heuristic $\|\hat{x}-x\| /$ normx $\approx \operatorname{cond}(A)$ eps $=$ 10^{-d} says the vector \hat{x} has about d correct digits. That does not translate into d correct digits for every component, except the largest one.
(b) Assume that a and b is are initialized floating point numbers with positive value and that the message "b is small compared to a " is displayed when the following code is executed:

```
if a + b == a
        disp('b is small compared to a')
end
```

What can you say about the actual magnitude of b ?

Solution (5 points)

b must be less than the spacing of the floating point numbers at a, so roughly $|b|<\operatorname{eps} a$ where eps is the unit roundoff.
-2 if you say $b \approx e p s$. For example $f\left(1+2^{100}\right)=2^{100}$.

2. (20 points)

(a) Show how the SVD can be used to solve the linear system

$$
\left(A^{T} A+\mu I\right) x=A^{T} b
$$

where $A \in \mathbb{R}^{m \times n}, n \leq m, \mu>0$, and $b \in \mathbb{R}^{m}$. Answer by completing the following code in Matlab:

```
% A, b, mu defined
[U,S,V] = svd(A);
[m,n] = size(A);
```

Solution (10 points)

```
% (USV')'(USV') + muI)x = (USV')b ---->
% (VS'SV' + mu*I)x = VS'U'b --->
% V(S'S + mu*I)V'x = VS'U'b
% (S'S + mu*I)y = btilde where btilde = S'(U'*b) and y = V'x
d = diag(S);
btilde = d.*(U(:,1:n)'*b); % 3 points for transformed rhs
y = btilde ./ (d.^2 + mu); % 4 points for solution of transformed system
x = V*y % 3 points for transforming back to get x
```

S is not square so -3 for things that involve S^{2}.
-3 for dimension incompatibility, e.g., $\operatorname{diag}(\mathrm{S}) *\left(\mathrm{U}{ }^{\prime} * \mathrm{~b}\right)$
-5 for correct but with an $O\left(n^{3}\right)$ computation, e.g. $\mathrm{V}^{\prime} * \mathrm{~A}^{\prime} * \mathrm{~b}$ instead of $\mathrm{V}^{\prime} *\left(\mathrm{~A}^{\prime} * \mathrm{~b}\right)$
(b) Suppose $A=Q R$ is the QR factorization of a matrix $A \in \mathbb{R}^{m \times n}$. Assume that $R(k, k)=0$ for some $k>1$ and that all other entries along R 's diagonal are nonzero. Show how to compute a nonzero vector $x \in \mathbb{R}^{n}$ so that $A x=0$. You may use the \backslash operator to solve triangular systems. Answer by completing the following code in Matlab:

```
% A defined
[Q,R] = qr(A);
[m,n] = size(A);
```

Solution (10 points)

```
% Ax = 0 means QRx = 0 means Rx = 0
% 3 points for recognizing that that need null vector for R
% R(1:k,1:k) is singular with zero in its lower right corner.
% 2 points for this observation
y = R(1:k-1,1:k-1)\R(1:k-1,k); % [y;-1] is in the nullspace of R(1:k,1:k)
% 3 points for this
x = [y;-1;zeros(n-k,1)]
% 2 points
```

-3 if correct but you set $k=n$.
3. (15 points) If $C \in \mathbb{R}^{n \times n}$ is symmetric and positive definite and $u \in \mathbb{R}^{n}$, then

$$
\left(C+u u^{T}\right)^{-1}=C^{-1}+\alpha v v^{T}
$$

where $v=C^{-1} u$ and $\alpha=-1 /\left(1+u^{T} C^{-1} u\right)$. By making effective use of the Cholesky factorization and the above math fact, complete the following function so that it performs as specified:

```
    function [x,z] = DoubleSolve(A,u,b)
% A is a symmetric positive definite n-by-n matrix.
% u and b are column n-vectors.
% x and z are column n-vectors with the property that Ax = b and
% (A + u*u')z = b.
```

You may use the \backslash operator to solve triangular systems.
Solution (15 points)

```
% Solve Ax = b using Cholesky for 5 points..
G = chol(A,'lower');
x = G'\(G\b);
% Solve Av = u for 4 points
v = G'\ (G\u);
% 6 points for using the math fact without inverse computation...
alfa = -1/(1+u'*v);
% z = (inv(A) + alfa*v*v')b = inv(A)*b + alfa*(v'*b)*v
z = x + alfa*(v'*b)*v
```

-4 if you have unnecessary solves with G
-2 for $\left(\mathrm{v} * \mathrm{v}^{\prime}\right) * \mathrm{x}$ instead of $\left(\mathrm{v}^{\prime} * \mathrm{x}\right) * \mathrm{v}$
-10 for any kind of inverse computation, e.g., $\operatorname{inv}(A)$ or $A \backslash$ eye (n, n).
4. (15 points) Short answer.
(a) Assume that $A \in \mathbb{R}^{n \times n}$ is symmetric with distinct eigenvalues. Describe in English what the power method would try to compute when applied to the matrix $(A-\mu I)^{-1}$.

Solution (5 points)
If λ is the closest eigenvalue of A to μ and $A x=\lambda x$, then $\lambda_{*}=1 /(\lambda-\mu)$ is the dominant eigenvalue of $(A-\mu I)^{-1}$ and $x_{*}=x$ is the corresponding eigenvector. The power method will try to find λ_{*} and x_{*}. If μ is equidistant to two eigenvalues then a problem.
(b) After k exact-arithmetic steps with starting unit 2-norm vector q_{1} we assume that the Lanczos method computes part of the decomposition $Q^{T} A Q=T$ where Q is orthogonal with $Q(:, 1)=q_{1}$ and T is tridiagonal. Explain. What makes the method a "sparse matrix friendly"? What is the method typically used for?

Solution (5 points)

Will have $Q(:, 1: k)$ and $T(1: k, 1: k) .(2$ points $)$
Uses only matrix-vector products and the last two Lanczos vectors (2 points)
The extremal eigenvalues of T_{k} are good approximations for the extremal eigenvalues of A. (1 point)
(c) Any symmetric positive definite matrix A has a Cholesky factorization $A=G G^{T}$ where G is lower triangular. Why does Matlab sparse Cholesky software compute the factorization $P A P^{T}=G G^{T}$ where P is a permutation matrix?

Solution (5 points)
P is chosen to minimize fill-in in the Cholesky factor
5. (15 points) For each of the following methods, draw a picture that communicates the main idea behind a step. No formulas are necessary. Just a labeled sketch that graphically indicates how the next iterate is obtained. (Such a picture for Newton's method would show the linear model and label its zero.)
(a) The Secant method for finding a zero of $f: \mathbb{R} \rightarrow \mathbb{R}$.

The picture should show show the secant line that goes through ($x_{k}, f\left(x_{k}\right)$ and $\left(x_{k-1}, f\left(x_{k-1}\right)\right)$. (3 points). The intersection of that line with the x-axis defones x_{k+1}.
(b) The Golden Section search method for finding a minimum of $f: \mathbb{R} \rightarrow \mathbb{R}$ on $[L, R]$ assuming that $f^{\prime \prime}$ is always positive.

The picture should show a function $f(x)$ with $f^{\prime \prime}(x)>0$ across the search interval $[L, R]$. (2 points). It should show two sample points c and d in the interval and a comparison based on comparison of $f(c)$ and $f(d)$. (1 point). It should show reduction of the search interval and the reuse of either $f(c)$ of $f(d)$ in th enext step (2 points)
(c)The steepest descent method with exact line search for finding a minimum of $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$. (Draw contours.)

Should show the negative gradient direction (2 points) and give a clue that one tries to minimize f in that direction.

6. (15 points)

(a) Consider the following Matlab script for approximating the square root of a positive real number A :

```
L = A;
W = 1;
for k=1:10
    L = (L+W)/2;
    W = A/L;
end
```

Explain why this is essentially an instance of Newton's method.

Solution (10 points)

Equivalent to

```
L = A;
for k=1:10
    L = (L+A/L)/2;
end
```

This is Newton's method applied to $f(L)=L^{2}-A$:

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}=x_{k}-\frac{x_{k}^{2}-A}{2 x_{k}}=\frac{1}{2}\left(x_{k}+\frac{A}{x_{k}}\right)
$$

At least -5 if you thing that $f(x)=\sqrt{x}$.
(b) Newton's method is applied to a function $f: \mathbb{R} \rightarrow \mathbb{R}$ that has a single root x_{*}. Here is a heuristic result that relates the error at step $k+1$ to the error at step k :

$$
\left|x_{k+1}-x_{*}\right| \approx \frac{\left|f^{\prime \prime}\left(x_{k}\right)\right|}{2\left|f^{\prime}\left(x_{k}\right)\right|}\left|x_{k}-x_{*}\right|^{2} .
$$

What additional information is required before one can be confident that the iteration converges quadratically for a particular initial guess x_{0} ?

Solution

The derivative must be bounded away from zero.
x_{0} must be close enough. How close depends on the second derivative (the bigger the closer) and the first derivative (the small the closer) .
Can also say that $\left.\mid f^{\prime \prime}(x) / f^{\prime} x\right) \mid$ bounded by M and $\left|x_{0}-x_{*}\right| \cdot M<1$
7. (15 points) Suppose $t, x, y \in \mathbb{R}^{m}$ are given and that we wish to use lsqnonlin to determine $a^{T}=$ $\left[a_{1}, \ldots, a_{k}\right]$ and $\rho^{T}=\left[\rho_{1}, \ldots, \rho_{k}\right]$ so that

$$
\phi(a, \rho)=\frac{1}{2} \sum_{i=1}^{m}\left(x_{i}-\sum_{j=1}^{k} a_{j} \cos \left(\frac{2 \pi t_{i}}{\rho_{j}}\right)\right)^{2}+\frac{1}{2} \sum_{i=1}^{m}\left(y_{i}-\sum_{j=1}^{k} a_{j} \sin \left(\frac{2 \pi t_{i}}{\rho_{j}}\right)\right)^{2}
$$

is minimized. To use lsqnonlin we must design a vector-valued function $R(a, \rho)$ with the property that

$$
\phi(a, \rho)=\frac{1}{2} R(a, \rho)^{T} R(a, \rho) .
$$

Express $R(a, \rho)$ in the form

$$
R(a, \rho)=\text { Matrix } \times\{\text { vector }\}-\{\text { vector }\}
$$

Clearly define the matrix and the two vectors.

Solution

Since

$$
\sum_{i=1}^{m}\left(x_{i}-\sum_{j=1}^{k} a_{j} \cos \left(\frac{2 \pi t_{i}}{\rho_{j}}\right)\right)^{2}=\|C a-x\|_{2}^{2}
$$

where $C=\left(c_{i j}\right) \in \mathbb{R}^{m \times k}$ and $c_{i j}=\cos \left(2 \pi t_{i} / \rho_{j}\right)$ and

$$
\sum_{i=1}^{m}\left(y_{i}-\sum_{j=1}^{k} a_{j} \sin \left(\frac{2 \pi t_{i}}{\rho_{j}}\right)\right)^{2}=\|S a-y\|_{2}^{2}
$$

where $C=\left(c_{i j}\right) \in \mathbb{R}^{m \times k}$ and $c_{i j}=\cos \left(2 \pi t_{i} / \rho_{j}\right)$ we have

$$
\phi(a, \rho)=\frac{1}{2}\|C a-x\|_{2}^{2}+\frac{1}{2}\|S a-y\|_{2}^{2}=\frac{1}{2}\left\|\left[\begin{array}{c}
C \\
S
\end{array}\right] a-\left[\begin{array}{l}
x \\
y
\end{array}\right]\right\|_{2}^{2}
$$

Thus,

$$
R=\left[\begin{array}{c}
C \\
S
\end{array}\right] a-\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

5 points for the matrix
3 points for the rhs
2 points for the vector that is multiplied by the matrix.
Up to -7 for stuff like $[C S][a ; a]=x+y$

