CS 4220: Final Exam

May 14, 2013

(Name)		
(Cornell NetID)		
Problem 1	10 points	
Problem 2	20 points	
Problem 3	15 points	
Problem 4	15 points	
Problem 5	15 points	
Problem 6	15 points	
Problem 7	10 points	

Check that your exam has ten (10) pages including this one.

1. (10 points)

(a) A 3-by-3 linear system with infinity-norm condition 10^{8} is solved via the MATLAB backslash operator \} on a computer with unit roundoff 10^{-17}. Here is the computed solution:

```
xHat(1) = 1234.5678901234567
xHat(2) = 1.2345678901234567
xHat(3) = .00012345678901234567
```

Underline the digits that are most likely correct and justify your answer by explaining how the relative error $\|\hat{x}-x\|_{\infty} /\|x\|_{\infty}$ depends on both the condition and the unit roundoff. Recall that $\|v\|_{\infty}=\max \left|v_{i}\right|$.
(b) Assume that a and b is are initialized floating point numbers with positive value and that the message "b is small compared to a " is displayed when the following code is executed:

```
if a + b == a
    disp('b is small compared to a')
end
```

What can you say about the actual magnitude of b ?

2. (20 points)

(a) Show how the SVD can be used to solve the linear system

$$
\left(A^{T} A+\mu I\right) x=A^{T} b
$$

where $A \in \mathbb{R}^{m \times n}, n \leq m, \mu>0$, and $b \in \mathbb{R}^{m}$. Answer by completing the following code in Matlab:

```
% A, b, mu defined
[U,S,V] = svd(A);
[m,n] = size(A);
```

(b) Suppose $A=Q R$ is the QR factorization of a matrix $A \in \mathbb{R}^{m \times n}$. Assume that $R(k, k)=0$ for some $k>1$ and that all other entries along R 's diagonal are nonzero. Show how to compute a nonzero vector $x \in \mathbb{R}^{n}$ so that $A x=0$. You may use the \backslash operator to solve triangular systems. Answer by completing the following code in Matlab:

```
% A defined
[Q,R] = qr(A);
[m,n] = size(A);
```

3. (15 points) If $C \in \mathbb{R}^{n \times n}$ is symmetric and positive definite and $u \in \mathbb{R}^{n}$, then

$$
\left(C+u u^{T}\right)^{-1}=C^{-1}+\alpha v v^{T}
$$

where $v=C^{-1} u$ and $\alpha=-1 /\left(1+u^{T} C^{-1} u\right)$. By making effective use of the Cholesky factorization and the above math fact, complete the following function so that it performs as specified:

```
    function [x,z] = DoubleSolve(A,u,b)
% A is a symmetric positive definite n-by-n matrix.
% u and b are column n-vectors.
% x and z are column n-vectors with the property that Ax = b and
% (A + u*u')z = b.
```

You may use the \backslash operator to solve triangular systems.
4. (15 points) Short answer.
(a) Assume that $A \in \mathbb{R}^{n \times n}$ is symmetric with distinct eigenvalues. Describe in English what the power method would try to compute when applied to the matrix $(A-\mu I)^{-1}$.
(b) After k exact-arithmetic steps with starting unit 2-norm vector q_{1} we assume that the Lanczos method computes part of the decomposition $Q^{T} A Q=T$ where Q is orthogonal with $Q(:, 1)=q_{1}$ and T is tridiagonal. Explain. What makes the method a "sparse matrix friendly"? What is the method typically used for?
(c) Any symmetric positive definite matrix A has a Cholesky factorization $A=G G^{T}$ where G is lower triangular. Why does Matlab sparse Cholesky software compute the factorization $P A P^{T}=G G^{T}$ where P is a permutation matrix?
5. (15 points) For each of the following methods, draw a picture that communicates the main idea behind a step. No formulas are necessary. Just a labeled sketch that graphically indicates how the next iterate is obtained. (Such a picture for Newton's method would show the linear model and label its zero.)
(a) The Secant method for finding a zero of $f: \mathbb{R} \rightarrow \mathbb{R}$.
(b) The Golden Section search method for finding a minimum of $f: \mathbb{R} \rightarrow \mathbb{R}$ on $[L, R]$ assuming that $f^{\prime \prime}$ is always positive.
(c)The steepest descent method with exact line search for finding a minimum of $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$. (Draw contours.)

6. (15 points)

(a) Consider the following Matlab script for approximating the square root of a positive real number A :

```
L = A;
W = 1;
for k=1:10
    L = (L+W)/2;
    W = A/L;
end
```

Explain why this is essentially an instance of Newton's method.
(b) Newton's method is applied to a function $f: \mathbb{R} \rightarrow \mathbb{R}$ that has a single root x_{*}. Here is a heuristic result that relates the error at step $k+1$ to the error at step k :

$$
\left|x_{k+1}-x_{*}\right| \approx \frac{\left|f^{\prime \prime}\left(x_{k}\right)\right|}{2\left|f^{\prime}\left(x_{k}\right)\right|}\left|x_{k}-x_{*}\right|^{2} .
$$

What additional information is required before one can be confident that the iteration converges quadratically for a particular initial guess x_{0} ?
7. (15 points) Suppose $t, x, y \in \mathbb{R}^{m}$ are given and that we wish to use lsqnonlin to determine $a^{T}=$ $\left[a_{1}, \ldots, a_{k}\right]$ and $\rho^{T}=\left[\rho_{1}, \ldots, \rho_{k}\right]$ so that

$$
\phi(a, \rho)=\frac{1}{2} \sum_{i=1}^{m}\left(x_{i}-\sum_{j=1}^{k} a_{j} \cos \left(\frac{2 \pi t_{i}}{\rho_{j}}\right)\right)^{2}+\frac{1}{2} \sum_{i=1}^{m}\left(y_{i}-\sum_{j=1}^{k} a_{j} \sin \left(\frac{2 \pi t_{i}}{\rho_{j}}\right)\right)^{2}
$$

is minimized. To use lsqnonlin we must design a vector-valued function $R(a, \rho)$ with the property that

$$
\phi(a, \rho)=\frac{1}{2} R(a, \rho)^{T} R(a, \rho) .
$$

Express $R(a, \rho)$ in the form

$$
R(a, \rho)=\text { Matrix } \times\{\text { vector }\}-\{\text { vector }\}
$$

Clearly define the matrix and the two vectors.

Some Matlab Functions

LU Factorization

```
[L,U,P] = lu(X) returns unit lower triangular matrix L, upper
triangular matrix U, and permutation matrix P so that
P*X = L*U.
```


Cholesky Factorization

```
G = chol(X.lower) returns an lower triangular G so that GG' = X
where X is symmetric and positive definite.
```


QR Factorization

```
[Q,R,E] = qr(A) produces unitary Q, upper triangular R and a
permutation matrix E so that A*E = Q*R. The column permutation E is
chosen so that ABS(DIAG(R)) is decreasing.
```

Singular Value Decomposition

```
[U,S,V] = svd(X) produces a diagonal matrix S, of the same
dimension as X and with nonnegative diagonal elements in
decreasing order, and orthogonal matrices U and V so that
X = U*S*V'.
```

Schur Decomposition for Symmetric Matrices

```
[U,D] = eig(X) produces a diagonal matrix D and
an orthogonal matrix U so that X = U*D*U' assuming that X
is real and symmetric.
```

