CS 4220: Final Exam

May 14, 2013

(Name)

(Cornell NetID)

Problem 1	10 points	
Problem 2	20 points	
Problem 3	15 points	
Problem 4	15 points	
Problem 5	15 points	
Problem 6	15 points	
Problem 7	10 points	

Π	

Check that your exam has ten (10) pages including this one.

1. (10 points)

(a) A 3-by-3 linear system with infinity-norm condition 10^8 is solved via the MATLAB backslash operator \setminus on a computer with unit roundoff 10^{-17} . Here is the computed solution:

xHat(1) = 1234.5678901234567 xHat(2) = 1.2345678901234567 xHat(3) = .00012345678901234567

Underline the digits that are most likely correct and justify your answer by explaining how the relative error $\|\hat{x} - x\|_{\infty}/\|x\|_{\infty}$ depends on both the condition and the unit roundoff. Recall that $\|v\|_{\infty} = \max |v_i|$.

(b) Assume that a and b is are initialized floating point numbers with positive value and that the message "b is small compared to a" is displayed when the following code is executed:

if a + b == a
 disp('b is small compared to a')

end

What can you say about the actual magnitude of b?

2. (20 points)

(a) Show how the SVD can be used to solve the linear system

$$(A^T A + \mu I)x = A^T b$$

where $A \in \mathbb{R}^{m \times n}$, $n \le m$, $\mu > 0$, and $b \in \mathbb{R}^m$. Answer by completing the following code in MATLAB:

% A, b, mu defined [U,S,V] = svd(A); [m,n] = size(A); (b) Suppose A = QR is the QR factorization of a matrix $A \in \mathbb{R}^{m \times n}$. Assume that R(k, k) = 0 for some k > 1 and that all other entries along R's diagonal are nonzero. Show how to compute a nonzero vector $x \in \mathbb{R}^n$ so that Ax = 0. You may use the \setminus operator to solve triangular systems. Answer by completing the following code in MATLAB:

% A defined
[Q,R] = qr(A);
[m,n] = size(A);

3. (15 points) If $C \in \mathbb{R}^{n \times n}$ is symmetric and positive definite and $u \in \mathbb{R}^n$, then

$$(C + uu^T)^{-1} = C^{-1} + \alpha v v^T$$

where $v = C^{-1}u$ and $\alpha = -1/(1 + u^T C^{-1}u)$. By making effective use of the Cholesky factorization and the above math fact, complete the following function so that it performs as specified:

function [x,z] = DoubleSolve(A,u,b)

% A is a symmetric positive definite n-by-n matrix.

- % u and b are column n-vectors.
- % x and z are column n-vectors with the property that Ax = b and
- % (A + u*u')z = b.

You may use the \setminus operator to solve triangular systems.

4. (15 points) Short answer.

(a) Assume that $A \in \mathbb{R}^{n \times n}$ is symmetric with distinct eigenvalues. Describe in English what the power method would try to compute when applied to the matrix $(A - \mu I)^{-1}$.

(b) After k exact-arithmetic steps with starting unit 2-norm vector q_1 we assume that the Lanczos method computes part of the decomposition $Q^T A Q = T$ where Q is orthogonal with $Q(:, 1) = q_1$ and T is tridiagonal. Explain. What makes the method a "sparse matrix friendly"? What is the method typically used for?

(c) Any symmetric positive definite matrix A has a Cholesky factorization $A = GG^T$ where G is lower triangular. Why does MATLAB sparse Cholesky software compute the factorization $PAP^T = GG^T$ where P is a permutation matrix?

5. (15 points) For each of the following methods, draw a picture that communicates the main idea behind a step. No formulas are necessary. Just a labeled sketch that graphically indicates how the next iterate is obtained. (Such a picture for Newton's method would show the linear model and label its zero.)

(a) The Secant method for finding a zero of $f: \mathbb{R} \to \mathbb{R}$.

(b) The Golden Section search method for finding a minimum of $f:\mathbb{R} \to \mathbb{R}$ on [L, R] assuming that f'' is always positive.

(c) The steepest descent method with exact line search for finding a minimum of $f:\mathbb{R}^2 \to \mathbb{R}$. (Draw contours.)

6. (15 points)

(a) Consider the following MATLAB script for approximating the square root of a positive real number A:

```
L = A;
W = 1;
for k=1:10
L = (L+W)/2;
W = A/L;
end
```

Explain why this is essentially an instance of Newton's method.

(b) Newton's method is applied to a function $f:\mathbb{R} \to \mathbb{R}$ that has a single root x_* . Here is a heuristic result that relates the error at step k + 1 to the error at step k:

$$|x_{k+1} - x_*| \approx \frac{|f''(x_k)|}{2|f'(x_k)|} |x_k - x_*|^2.$$

What additional information is required before one can be confident that the iteration converges quadratically for a particular initial guess x_0 ?

7. (15 points) Suppose $t, x, y \in \mathbb{R}^m$ are given and that we wish to use lsqnonlin to determine $a^T = [a_1, \ldots, a_k]$ and $\rho^T = [\rho_1, \ldots, \rho_k]$ so that

$$\phi(a,\rho) = \frac{1}{2} \sum_{i=1}^{m} \left(x_i - \sum_{j=1}^{k} a_j \cos\left(\frac{2\pi t_i}{\rho_j}\right) \right)^2 + \frac{1}{2} \sum_{i=1}^{m} \left(y_i - \sum_{j=1}^{k} a_j \sin\left(\frac{2\pi t_i}{\rho_j}\right) \right)^2$$

is minimized. To use lsqnonlin we must design a vector-valued function $R(a, \rho)$ with the property that

$$\phi(a,\rho) = \frac{1}{2}R(a,\rho)^T R(a,\rho)$$

Express $R(a, \rho)$ in the form

$$R(a, \rho) = Matrix \times \{vector\} - \{vector\}$$

Clearly define the matrix and the two vectors.

Some MATLAB Functions

LU Factorization

[L,U,P] = lu(X) returns unit lower triangular matrix L, upper triangular matrix U, and permutation matrix P so that P*X = L*U.

Cholesky Factorization

G = chol(X.lower) returns an lower triangular G so that GG' = X where X is symmetric and positive definite.

QR Factorization

[Q,R,E] = qr(A) produces unitary Q, upper triangular R and a permutation matrix E so that A*E = Q*R. The column permutation E is chosen so that ABS(DIAG(R)) is decreasing.

Singular Value Decomposition

[U,S,V] = svd(X) produces a diagonal matrix S, of the same dimension as X and with nonnegative diagonal elements in decreasing order, and orthogonal matrices U and V so that X = U*S*V'.

Schur Decomposition for Symmetric Matrices

[U,D] = eig(X) produces a diagonal matrix D and an orthogonal matrix U so that X = U*D*U' assuming that X is real and symmetric.