
CS4220 Assignment 3 Due: 3/1/14 (Sat) at 6pm

You must work either on your own or with one partner. You may discuss background issues and general solution

strategies with others, but the solutions you submit must be the work of just you (and your partner). If you work with

a partner, you and your partner must first register as a group in CMS and then submit your work as a group. Each

submitted m-file is worth 5 points. One point may be deducted for poor style.

Topics: Band systems. Cholesky factorization. LDL with Symmetric pivoting. Sparse factorizations.

1 Downward Displacement of a Cantilevered Beam

Define (by example) the n-by-n matrices An and Un by

An =

























9 −4 1 0 0 0 0 0
−4 6 −4 1 0 0 0 0

1 −4 6 −4 1 0 0 0
0 1 −4 6 −4 1 0 0
0 0 1 −4 6 −4 1 0
0 0 0 1 −4 6 −4 1
0 0 0 0 1 −4 5 −2
0 0 0 0 0 1 −2 1

























(n = 8)

Un =

























2 −2 1 0 0 0 0 0
0 1 −2 1 0 0 0 0
0 0 1 −2 1 0 0 0
0 0 0 1 −2 1 0 0
0 0 0 0 1 −2 1 0
0 0 0 0 0 1 −2 1
0 0 0 0 0 0 1 −2
0 0 0 0 0 0 0 1

























(n = 8)

Thus, the diagonal of A is all 6’s except An(1, 1) = 9, An(n− 1, n− 1) = 5, and An(n, n) = 1. It can be shown
that An = UnUT

n and thus, An is positive definite.
The solution to the linear system And = ones(n, 1)/n4 approximates the displacement of a length-1 can-

tilevered beam that is fixed at the origin. It looks something like this:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.1

−0.05

0

0.05

0.1

N
e
g
a
ti
v
e
 D

is
p
la

c
e
m

e
n
t

1



In particular, d(k) is the downward displacement of the beam at x = k/n for k = 1:n. In this problem you
solve the linear system And = ones(n, 1)/n4 two ways.

In the first method you are to make use of the factorization An = UnUT
n given above. In particular, you are

to write a function d = Beam1(n) that uses this factorization to solve the linear system And = ones(n, 1)/n4.
Your implementation should require just a single n-vector of storage. Intuition tells us that 0 < d1 < · · · < dn.
That is, the displacement increases as we walk out to the end of the beam. Add comments at the bottom of
Beam1 that explains why the output vector d has this property assuming exact arithmetic.

For the second method you are to use chol. In particular, you are to write a function [d,condA] =

Beam2(n) that (a) sets up the triu(An) in sparse format, (b) uses chol to compute the sparse Cholesky
factorization An = RT R where R is upper triangular, (c) uses R to solve And = ones(n, 1)/n4, and (d) uses
condest to estimate the condition of An. For full credit, your implementation of Beam2 should call sparse
just once. (You may want to check out some of the “sparse” demos from the second week of class.)

The test script ShowBeam can be used to check things out. Submit Beam1 and Beam2 to CMS.

2 A Direction of Negative Curvature

If A ∈ IRn×n is symmetric positive definite, then for all nonzero vectors x ∈ IRn we have xT Ax > 0. If A is not
positive definite, then there is a nonzero vector x ∈ IRn such that xT Ax ≤ 0. These properties are preserved
under congruence transformations. If A is symmetric and Z is nonsingular, then B = ZT AZ is said to be
congruent to A. Noting that

xT Bx = (Zx)T A(Zx)

we see that xT Bx > 0 for all nonzero x if A is positive definite. Likewise, if A is not positive definite, then we
can find an x so that xT Bx ≤ 0. In this problem you are to implement the following function:

function x = NegativeCurvature(A)

% A is an nxn symmetric matrix. If A is positive definite then

% x is the empty vector. Otherwise, x is a unit 2-norm n-vector with the

% property that x’*Ax <= 0.

Your implementation should exploit the above facts about congruence transformations and it must make
effective use of the following function that can be downloaded from the website:

function [L,D,P,k] = LDLTpiv(A)

% A is an nxn symmetric matrix.

% k is an integer that satisfies 1<=k<=n+1.

% If k==n+1, then A is positive definite and PAP’ = LDL’ where P is a permutation

% matrix, L is unit lower triangular, and D is diagonal.

% Otherwise, A is not positive definite and PAP’ = LDL’ where P is a

% permutation matrix, L is unit lower triangular with L(k:n,k:n) = eye(n-k+1,n-k+1),

% D(1:k-1,1:k-1) is diagonal with positive diagonal entries, and D(k,k)<=0.

Hints. If A is not positive definite, then LDLTpiv computes the factorization

PAP T = LDLT =

[

L11 0

L21 In−k+1

][

diag(d1, . . . , dk−1) 0

0 D(k:n, k:n)

][

L11 0

L21 In−k+1

]T

and D(k, k) <= 0. Here is what the D matrix might look like in this situation:

D =













3 0 0 0 0
0 2 0 0 0

0 0 −1 5 7
0 0 5 −4 6
0 0 7 6 −8













(n = 5, k = 3)

Note that A and D are congruent so you will want to think about wT Dw ≤ 0. Submit your implementation
of NegativeCurvature to CMS. A test script ShowNegCurve can be downloaded from the course website.

2



3 Sparse Cholesky and Sparse LU

Download SparseFactorizations.zip from the syllabus page. Unzip the file and move the resulting folder
into your Matlab workspace. Study and run the demos ShowSparseChol and ShowSparseLU. These demos
feed off of some .mat files that were downloaded from the UF Sparse Matrix Collection. Study the README file
which tells you how to interact with the UF Collection. In this problem you are to use that same collection to
produce two demo files of your own.

Find a symmetric positive definite example in the collection with the property that n > 2000. (Your example
must be different from those that are used by ShowSparseChol.) Name the downloaded file MySPD.mat. Write
a script ShowMySPD that produces the same display for your example as ShowSparseChol does for each of
the given examples. To do this just copy ShowSparseChol into ShowMySPD.m, remove the loop, and set A =

GetMatrix(’MySPD.mat’). In addition your script should

• Print the UF id of your example and the value of n.

• Solve Ax = A ·ones(n, 1) using the Cholesky factorization of A. Report the relative error, the time
required to compute the factorization, and the time required to solve the system using the factors.

• Solve Ax = A·ones(n, 1) using the Cholesky factorization of A with minimum degree pivoting. Report
the relative error, the time required to compute the factorization, and the time required to solve the
system using the factors.

• Solve Ax = A ·ones(n, 1) using the Cholesky factorization of A with reverse Cuthill-McKee ordering.
Report the relative error, the time requitred to compute the ordering and the factorization, and the time
required to solve the system using the factors.

Submit MySPD.mat and ShowMySPD.m to CMS. When we test your code, GetMatrix will be in the working
directory.

Find a general unsymmetric example in the collection with the property that n > 2000. (Your exam-
ple must be different from those that are used by ShowSparseLU.) Name the downloaded file MyGEN.mat.
Write a script ShowMyGEN that produces the same display for your example as ShowSparseLU does for each
of the given examples. To do this just copy ShowSparseLU into ShowMyGEN.m, remove the loop, and set A =

GetMatrix(’MyGEN.mat’). In addition your script should

• Print the UF id of your example and the value of n.

• Solve Ax = A ·ones(n, 1) using the LU factorization of A with threshold pivoting. Report the relative
error, the time required to compute the factorization, and the time required to solve the system using
the factors.

Submit MyGEN.mat and ShowMyGEN.m to CMS. When we test your code, GetMatrix will be in the working
directory.

3


