
CS4220 Assignment 2 Due: 2/13/14 (Thur) at 11pm

You must work either on your own or with one partner. You may discuss background issues and general solution
strategies with others, but the solutions you submit must be the work of just you (and your partner). If you work with
a partner, you and your partner must first register as a group in CMS and then submit your work as a group. Each
submitted function is worth 5 points. Points may be deducted for poor style.

Topics: SVD, LU, Fast Transforms, connections between geometry and linear algebra.

1 Matrix-Times-Vector and the 1-Norm

Download and run the script ShowRange2. Observe that it displays the set

S2 = {x ∈ IR2 | ‖ x ‖
2
≤ 1}

and the set
Im(S2) = {y ∈ IR2 | y = Ax and x ∈ S2 }

for random 2-by-2 matrices A. Develop a script ShowRange1 that does the same thing only where the 1-norm
is used instead of the 2-norm. In particular, it should display

S1 = {x ∈ IR2 | ‖ x ‖
1
≤ 1}

and the set
Im(S1) = {y ∈ IR2 | y = Ax and x ∈ S1 }

for random 2-by-2 matrices A. Submit ShowRange1 to CMS.

2 Hadamard Systems

The Hadamard matrices are defined as follows:

H1 =
[

1
]

H2 =

[

H1 H1

H1 −H1

]

=

[

1 1

1 −1

]

H4 =

[

H2 H2

H2 −H2

]

=









1 1 1 1
1 −1 1 −1

1 1 −1 −1
1 −1 −1 1









...

Hn =

[

Hm Hm

Hm −Hm

]

(n = 2m)

Suppose b ∈ IRn and that n is a power of two and that we want solve Hnx = b, i.e.,

[

Hm Hm

Hm −Hm

][

x(1:m)

x(m + 1:n)

]

=

[

b(1:m)

b(m + 1:n)

]

By manipulating this equation, show that we can solve the order-n Hadamard system Hnx = b by solving a
pair of half-sized Hadamard systems. Use this idea to develop a recursive implementation for

1



function x = HadSolve(b)

% b is a columnn-vector and n is a power of 2.

% Solves the nxn Hadamard system Hn*x = b

In addition, write a recursive function HadSolveFlops that computes the number of flops required to solve an
order-n Hadamard system, i.e.,

function N = HadSolveFlops(n)

% n is a power of 2.

% N is the number of flops required to solve an order-n Hadamard system.

Submit HadSolve and HadSolveFlops to CMS. A test script HadCheck can be downloaded from the course
website.

3 Chebychev Interpolation

Suppose we are given the points (x1, y1), . . . , (xn, yn) with x1 < x2 < · · · < xn and “basis functions”
B1(x), . . . , Bn(x). Our goal is to determine scalars α1, . . . , αn so that if

f(x) = α1B1(x) + α2B2(x) + · · ·+ αnBn(x)

then
f(xi) = yi i = 1:n.

This interpolation problem is a linear equation problem. In particular, the vector of unknown coefficients α
satisfies Mα = y where Bi(xj) is the ij entry in the matrix M . In this problem you write a function that sets
up and solves such a system when the basis functions Bi(x) are based on Chebyshev polynomials.

The Chebschev polynomials T0(x), T1(x), . . . are defined as follows:

Tk(x) =







1 if k = 0
x if k = 1
2xTk−1(x) − Tk−2(x) if k ≥ 2.

Thus, Tk(x) has degree k. These polynomials are very nicely behaved on the interval [-1,+1] in that they are
bounded by 1 in absolute value. However, outside of [-1,+1] the Chebyschev polynomials take on huge values.
This poses a problem in the interpolation setting should any of the xi fall outside [−1, +1]. A way around this
is to set

Bi(x) = Ti−1

(

−1 + 2
x − a

b − a

)

where a = x1 and b = xn. We’ll call this the “Chebyshev polynomial basis with respect to the interval [a, b]”.
Notice that

a ≤ x ≤ b ⇒ −1 ≤ −1 + 2
x− a

b− a
≤ b

so when we set up the M matrix, the underlying Chebyschev evaluations are “nice”. Complete the following
function so that it performs as specified:

function alfa = ChebyInterp(x,y)

% x and y are column n-vectors and x(1)<x(2)<...<x(n).

% alfa is a column n-vector with the property that if

% f(x) = alfa(1)B_{1}(x) +...+alfa(n)B_{n}(x)

% where the B_{1}(x),...,B_{n}(x) is the Chebyschev polynomial

% basis with respect to [a,b], then f(x(i)) = y(i), i=1:n.

Your implementation must make effective use of the Matlab lu function. The process by which you set up
the matrix M should be vectorized. Submit ChebyInterp to CMS. (Note: You will have to write your own
test script for this problem.)

2



4 Using LU to Estimate {σn, un, vn}

Suppose UT AV = Σ is the SVD of A ∈ IRn×n and that uk = U(:, k), vk = V (:.k), and σk = Σkk. Note that

A = UΣV T =

n
∑

k=1

σkukvT
k .

In many applications the smallest “singular triple” {σn, un, vn} is required. Typically this is because the matrix

B = A − σnunvT
n =

n−1
∑

k=1

σkukvT
k

is the closest singular matrix to A as measured by the Frobenius norm. (Nice exercise: show that ‖ A − B ‖F =
σn.) In this problem we show how to estimate {σn, un, vn} using the LU factorization, which is much cheaper
than computng the SVD.

To motivate the method we assume that σn−1 >> σn. Suppose z ∈ IRn has unit 2-norm and that we solve
Aw = z. Thus,

w = A−1z = (UΣV T )−1z = (V Σ−1UT )z =

(

n
∑

k=1

1

σk

vkuT
k

)

z =
n
∑

k=1

(

uT
k z

σk

)

vk

Unless z is (nearly) orthogonal to un, we see that w is very “rich” in the direction of vn because of the
assumption that σn << σn−1. (Note. When we say that a vector f is rich in the direction of another vector
g, we mean that f (almost) points in the same direction as g.)

Likewise, suppose z ∈ IRn has unit 2-norm and that we solve AT w = z. Thus,

w = (AT )−1z = (V ΣUT )−1z = (UΣ−1V T )z =

(

n
∑

k=1

1

σk

ukvT
k

)

z =

n
∑

k=1

(

vT
k z

σk

)

uk

Unless z is (nearly) orthogonal to vn, we see that w is very rich in the direction of un because of the assumption
that σn << σn−1.

This suggests a method for “bootstrapping” our way to good estimates for un and vn:

Let z ∈ IRn be a random vector with unit 2-norm.
for k = 1:nRepeat

Solve Aw = z and set v = w/‖w ‖
2
.

Set z = v.
Solve AT w = z and set σ = 1/‖ w ‖

2
and u = w/‖ w ‖

2
.

end
{ σ, u, and v are the approximations to σn, un, and vn}

Here is a brief heuristic explanation that explains why σ can be regarded as an approximation to σn. If z = vn,
then σ = σn. If z is almost in the direction of vn, then σ will almost equal σn.

Write a function [sigma,u,v] = SigUVn(A,nRepeat) that implements this idea. It should compute the
factorization PA = LU and then use it repeatedly to solve the systems Aw = z and AT w = z as the iteration
progresses. Submit SigUVn to CMS. A test function ShowSigUVn is available on th ecourse website.

3


