
CS4220 Assignment 1 Due: 2/2/14 (Sunday) at 11pm
You must work either on your own or with one partner. You may discuss background issues and general solution

strategies with others, but the solutions you submit must be the work of just you (and your partner). If you work with

a partner, you and your partner must first register as a group in CMS and then submit your work as a group. Each

submitted function is worth 5 points. Points may be deducted for poor style.

Topics: Elementary matrix operations in Matlab. Matrix-vector products. Block matrices. Discrete cosine
transform. Jpeg compression. Vectorization.

1 The Discrete Cosine Transform

The discrete cosine transform of a vector x ∈ IRn is a matrix-vector product y = Cnx where the DCT matrix
Cn ∈ IRn×n is the defined by

Cn = (cij) cij = cos

(

(i − 1)(2j − 1)

2n
π

)

.

The DCT matrix can be set up as follows in Matlab:

C = cos((pi/(2*n))*(0:n-1)’*(1:2:2*n-1))

This matrix is highly structured making it possible to execute the matrix-vector product Cnx fast. In this
problem you will come to appreciate this for the case n = 8. The 8-point DCT is central to JPEG image
compression as you will see in the second part of this assignment.

If cj = cos(jπ/16), for j = 1:7, then by using facts like cj+16 = −cj it can be shown that

C8 =

1 1 1 1 1 1 1 1
c1 c3 c5 c7 −c7 −c5 −c3 −c1

c2 c6 −c6 −c2 −c2 −c6 c6 c2

c3 −c7 −c1 −c5 c5 c1 c7 −c3

c4 −c4 −c4 c4 c4 −c4 −c4 c4

c5 −c1 c7 c3 −c3 −c7 c1 −c5

c6 −c2 c2 −c6 −c6 c2 −c2 c6

c7 −c5 c3 −c1 c1 −c3 c5 −c7

.

In general, an n = 8 matrix-vector product requires 2n2 = 128 flops, but if the DCT matrix is involved, then
work can be reduced by about 60% from the flop point of view. The key idea is to observe that C8 can be
written as a product C8 = T3T2T1 where

T1 =

1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
1 0 0 0 0 0 0 −1
0 1 0 0 0 0 −1 0
0 0 1 0 0 −1 0 0
0 0 0 1 −1 0 0 0

T2 =

1 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0
1 0 0 −1 0 0 0 0
0 1 −1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

T3 =

1 1 0 0 0 0 0 0
0 0 0 0 c1 c3 c5 c7

0 0 c2 c6 0 0 0 0
0 0 0 0 c3 −c7 −c1 −c5

c4 −c4 0 0 0 0 0 0
0 0 0 0 c5 −c1 c7 c3

0 0 c6 −c2 0 0 0 0
0 0 0 0 c7 −c5 c3 −c1

1

The DCT y = C8x = T3T2T1x = T3(T2(T1x)) turns into a 3-step process:

• u = T1x, this involves 8 flops.

• v = T2u, this involves 4 flops.

• y = T3v, this involves 37 flops.

Implement the following function so that it performs as specified.

function Y = DCT8(X)

% X is an 8-by-m matrix

% Y = C*X where C is the 8-by-8 DCT matrix.

To receive full credit, your implementation should be vectorized. If you succeed in this regard, then your
implementation will not involve any loops. Submit DCT8 to CMS.

2 The Inverse Discrete Cosine Transform

An important property of Cn is that its inverse is a column scaling of its transpose. Indeed, it can be shown
that

CnCT
n = Dn = diag(n, n/2, . . . , n/2) (1)

and so Cn(CT
n D−1

n) = In, i.e., C−1
n = CT

n D−1
n . Let’s check this out for n = 3:

C3 =

1 1 1
cos(30o) cos(90o) cos(150o)
cos(60o) cos(180o) cos(300o)

 =

1 1 1√
3/2 0 −

√
3/2

1/2 −1 1/2

C3C
T
3 = D3 =

3 0 0
0 3/2 0
0 0 3/2

C−1

3
= CT

3 D−1

3
=

1
√

3/2 1/2
1 0 −1

1 −
√

3/2 1/2

1/3 0 0
0 2/3 0
0 0 2/3

 =

1/3 1/
√

3 1/3
1/3 0 −2/3

1/3 −1/
√

3 1/3

It is easy to see that these recipes for C3 and C−1
3 satisfy C3C

−1
3 = C−1

3 C3 = I3.
Implement the following function so that it performs as specified:

function Y = IDCT8(X)

% X is an 8-by-m matrix

% Y satisfies C*Y = X where C is the 8-by-8 DCT matrix.

Your implementation should be fully vectorized (no loops) and submitted to CMS. Hint. Exploit the fact that
C8 = T3T2T1 and C−1

8 = CT
n D−1

n .

3 JPEG Compression

This problem gives you a snapshot of how JPEG image compression works. Here is the essential story. A
picture is a matrix of pixels. We regard the matrix as block matrix with 8x8 blocks. We perform operations
on each of the blocks and discover how to “capture its essence” with many fewer than 64 numbers.

The starting point for us is an m-by-n integer matrix A whose entries are between 0 and 255. We’ll call
this the picture matrix. For a color image there are three picture matrices, one for red, one for green, and one

2

for blue. We will present the ideas as if the image is black and white. The calculations that we outline below
would be applied separately to the red, green and blue matrices.

Entry aij is the grayness value of pixel (i, j) with 0 corresponding to black and 255 corresponding to white.
Assume m = 8m1 and n = 8n1 and think of A as an m1-by-n1 block matrix with 8-by-8 blocks, e.g.,

A =

A11 A12 A13 A14 A15

A21 A22 A23 A24 A25

A31 A32 A33 A34 A35

A41 A42 A43 A44 A45

m = 32, n = 40

A34 = A(17:24, 25:32)

JPEG compression transforms the picture matrix A “block-by-block” to another matrix B

A11 A12 A13 A14 A15

A21 A22 A23 A24 A25

A31 A32 A33 A34 A35

A41 A42 A43 A44 A45

→

B11 B12 B13 B14 B15

B21 B22 B23 B24 B25

B31 B32 B33 B34 B35

B41 B42 B43 B44 B45

according to the rule
Bij = round

((

C8AijC
T
8

)

./Q
)

where Q is an 8-by-8 quantization matrix. A popular choice is

Q =

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

.

We refer to B as the JPEG matrix. Let’s take a look at the computation of the Bij using an example. Here is
a typical block from A, i.e., an 8-by-8 patch from the picture:

75 63 66 67 66 71 83 95

72 64 71 76 78 82 88 90

79 76 78 77 74 76 85 91

AIJ = 83 79 76 67 60 64 79 93

83 66 65 61 58 64 78 89

77 71 72 80 91 95 89 79

79 89 95 100 101 98 92 84

77 105 109 107 97 89 88 90

We take the DCT of the columns C8Aij and then the rows (C8Aij)C
T
8 and get

3

5162.000 -143.657 79.399 -56.735 21.213 26.844 6.911 5.928

-272.682 -70.761 131.075 4.546 40.651 28.310 20.479 9.593

195.475 -8.800 -111.240 -23.561 -16.378 -15.552 -11.692 -7.375

-126.415 -58.711 17.540 77.309 21.566 17.159 13.655 6.470

-96.167 43.771 97.150 -68.698 8.000 -4.257 1.972 -2.129

44.224 18.136 0.204 -8.276 -5.666 -6.305 -2.313 -1.205

6.283 0.644 -6.692 8.778 -2.957 -7.008 -3.760 -2.146

-20.590 8.158 21.505 -11.816 9.812 7.940 3.151 1.757

Notice that entries range from big to small as we move from the upper left corner to the lower right corner.
This is the “miracle” of the DCT; it represents Aij in a particularly handy basis so that the important non-zero
information is “compressed” into a small part of the matrix.

Now look at the quantization matrix Q above. The pointwise divide (C8AijC
T
8)./Q has the effect of

accentuating the big-to-small drift:

322.6250 -13.0597 7.9399 -3.5460 0.8839 0.6711 0.1355 0.0972

-22.7235 -5.8967 9.3625 0.2393 1.5635 0.4881 0.3413 0.1744

13.9625 -0.6769 -6.9525 -0.9817 -0.4095 -0.2728 -0.1695 -0.1317

-9.0296 -3.4536 0.7973 2.6658 0.4229 0.1972 0.1707 0.1044

-5.3426 1.9896 2.6257 -1.2268 0.1176 -0.0391 0.0192 -0.0276

1.8427 0.5182 0.0037 -0.1293 -0.0699 -0.0606 -0.0205 -0.0131

0.1282 0.0101 -0.0858 0.1009 -0.0287 -0.0579 -0.0313 -0.0212

-0.2860 0.0887 0.2264 -0.1206 0.0876 0.0794 0.0306 0.0177

Rounding this produces

323 -13 8 -4 1 1 0 0

-23 -6 9 0 2 0 0 0

14 -1 -7 -1 0 0 0 0

BIJ = -9 -3 1 3 0 0 0 0

-5 2 3 -1 0 0 0 0

2 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

This is typical. About 75% of Bij ’s entries are zero. The rest of the JPEG process (not part of this problem)
involves a clever “concatenation” of the nonzero information in all the Bij. In the end the number of bits
required to represent the picture is typically reduced by a factor of about 20.

This takes care of the compression. How do we “decompress” a JPEG matrix? The idea is simply to visit
each block and “undo” the Q-divide and the DCT’s:

Ãij = C−1

8 (Bij. ∗ Q)(C−1

8)T

The resulting block matrix Ã encodes the reconstructed image. Complete the following functions so that they
perform as specified:

function B = JPEG(A)

% A is an mxn picture matrix and B is its mxn JPEG-compressed analog.

% Assumes that both m and n are divisible by 8.

function B = IJPEG(A)

% A is mxn JPEG-compressed matrix and B is its JPEG decompressed analog.

% Assumes that both m and n are divisible by 8.

To receive full credit, your implementations must be fully vectorized. Here are some linear algebra/Matlab

pointers to help you in this regard:

4

• Although the function DCT8 is designed to compute products of the form Y = C8X, it can also be used
to compute products of the form G = FCT

8 where F ∈ IRm×8. It’s a 1-liner: G = DCT8(F’)’. Likewise,
IDCT8 can be used to compute G = F (C−1

8)T .

• There are obvious double-loop implementations of JPEG and IJPEG that process one Aij at a time. But by
using reshape you can avoid looping. Hint: DCT8(reshape(A,8,m*n/8)) computes the products C8Aij

over all i and j.

• The operations involving Q can also be done without loops by making use of the Matlab function kron.
Here’s a hint:

R = kron(ones(4,5),Q) ↔ R =

Q Q Q Q Q
Q Q Q Q Q
Q Q Q Q Q
Q Q Q Q Q

If vectorization is a challenge, then start by getting a working non-vectorized implementation. Then start
converting the loops.

Submit both JPEG and IJPEG to CMS. Note: we supply you with a sample jpeg file, but you can try out
others for fun. Use Trim to ensure that the pixel dimensions are divisible by 8.

5

