CS4220 Assignment 1 Due: 2/2/14 (Sunday) at 11pm

You must work either on your own or with one partner. You may discuss background issues and general solution strategies with others, but the solutions you submit must be the work of just you (and your partner). If you work with a partner, you and your partner must first register as a group in CMS and then submit your work as a group. Each submitted function is worth 5 points. Points may be deducted for poor style.

Topics: Elementary matrix operations in Matlab. Matrix-vector products. Block matrices. Discrete cosine transform. Jpeg compression. Vectorization.

1 The Discrete Cosine Transform

The discrete cosine transform of a vector $x \in \mathbb{R}^{n}$ is a matrix-vector product $y=C_{n} x$ where the $D C T$ matrix $C_{n} \in \mathbb{R}^{n \times n}$ is the defined by

$$
C_{n}=\left(c_{i j}\right) \quad c_{i j}=\cos \left(\frac{(i-1)(2 j-1)}{2 n} \pi\right) .
$$

The DCT matrix can be set up as follows in Matlab:

$$
\mathrm{C}=\cos \left((\mathrm{pi} /(2 * \mathrm{n})) *(0: \mathrm{n}-1)^{\prime} *(1: 2: 2 * \mathrm{n}-1)\right)
$$

This matrix is highly structured making it possible to execute the matrix-vector product $C_{n} x$ fast. In this problem you will come to appreciate this for the case $n=8$. The 8 -point DCT is central to JPEG image compression as you will see in the second part of this assignment.

If $c_{j}=\cos (j \pi / 16)$, for $j=1: 7$, then by using facts like $c_{j+16}=-c_{j}$ it can be shown that

$$
C_{8}=\left[\begin{array}{rrrrrrrr}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
c_{1} & c_{3} & c_{5} & c_{7} & -c_{7} & -c_{5} & -c_{3} & -c_{1} \\
c_{2} & c_{6} & -c_{6} & -c_{2} & -c_{2} & -c_{6} & c_{6} & c_{2} \\
c_{3} & -c_{7} & -c_{1} & -c_{5} & c_{5} & c_{1} & c_{7} & -c_{3} \\
c_{4} & -c_{4} & -c_{4} & c_{4} & c_{4} & -c_{4} & -c_{4} & c_{4} \\
c_{5} & -c_{1} & c_{7} & c_{3} & -c_{3} & -c_{7} & c_{1} & -c_{5} \\
c_{6} & -c_{2} & c_{2} & -c_{6} & -c_{6} & c_{2} & -c_{2} & c_{6} \\
c_{7} & -c_{5} & c_{3} & -c_{1} & c_{1} & -c_{3} & c_{5} & -c_{7}
\end{array}\right]
$$

In general, an $n=8$ matrix-vector product requires $2 n^{2}=128$ flops, but if the DCT matrix is involved, then work can be reduced by about 60% from the flop point of view. The key idea is to observe that C_{8} can be written as a product $C_{8}=T_{3} T_{2} T_{1}$ where

$$
\begin{gathered}
T_{1}=\left[\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 1 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 & 0 & 0
\end{array}\right] \quad T_{2}=\left[\begin{array}{rrrrrrrr}
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \\
\\
T_{3}=\left[\begin{array}{rrrrrrrr}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & c_{1} & c_{3} & c_{5} & c_{7} \\
0 & 0 & c_{2} & c_{6} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & c_{3} & -c_{7} & -c_{1} & -c_{5} \\
c_{4} & -c_{4} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & c_{5} & -c_{1} & c_{7} & c_{3} \\
0 & 0 & c_{6} & -c_{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & c_{7} & -c_{5} & c_{3} & -c_{1}
\end{array}\right]
\end{gathered}
$$

The DCT $y=C_{8} x=T_{3} T_{2} T_{1} x=T_{3}\left(T_{2}\left(T_{1} x\right)\right)$ turns into a 3 -step process:

- $u=T_{1} x$, this involves 8 flops.
- $v=T_{2} u$, this involves 4 flops.
- $y=T_{3} v$, this involves 37 flops.

Implement the following function so that it performs as specified.

```
    function Y = DCT8(X)
% X is an 8-by-m matrix
% Y = C*X where C is the 8-by-8 DCT matrix.
```

To receive full credit, your implementation should be vectorized. If you succeed in this regard, then your implementation will not involve any loops. Submit DCT8 to CMS.

2 The Inverse Discrete Cosine Transform

An important property of C_{n} is that its inverse is a column scaling of its transpose. Indeed, it can be shown that

$$
\begin{equation*}
C_{n} C_{n}^{T}=D_{n}=\operatorname{diag}(n, n / 2, \ldots, n / 2) \tag{1}
\end{equation*}
$$

and so $C_{n}\left(C_{n}^{T} D_{n}^{-1}\right)=I_{n}$, i.e., $C_{n}^{-1}=C_{n}^{T} D_{n}^{-1}$. Let's check this out for $n=3$:

$$
\begin{gathered}
C_{3}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
\cos \left(30^{\circ}\right) & \cos \left(90^{\circ}\right) & \cos \left(150^{\circ}\right) \\
\cos \left(60^{\circ}\right) & \cos \left(180^{\circ}\right) & \cos \left(300^{\circ}\right)
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \\
\sqrt{3} / 2 & 0 & -\sqrt{3} / 2 \\
1 / 2 & -1 & 1 / 2
\end{array}\right] \\
C_{3} C_{3}^{T}=D_{3}=\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & 3 / 2 & 0 \\
0 & 0 & 3 / 2
\end{array}\right] \\
C_{3}^{-1}=C_{3}^{T} D_{3}^{-1}=\left[\begin{array}{ccc}
1 & \sqrt{3} / 2 & 1 / 2 \\
1 & 0 & -1 \\
1 & -\sqrt{3} / 2 & 1 / 2
\end{array}\right]\left[\begin{array}{ccc}
1 / 3 & 0 & 0 \\
0 & 2 / 3 & 0 \\
0 & 0 & 2 / 3
\end{array}\right]=\left[\begin{array}{ccc}
1 / 3 & 1 / \sqrt{3} & 1 / 3 \\
1 / 3 & 0 & -2 / 3 \\
1 / 3 & -1 / \sqrt{3} & 1 / 3
\end{array}\right]
\end{gathered}
$$

It is easy to see that these recipes for C_{3} and C_{3}^{-1} satisfy $C_{3} C_{3}^{-1}=C_{3}^{-1} C_{3}=I_{3}$.
Implement the following function so that it performs as specified:

```
        function Y = IDCT8(X)
% X is an 8-by-m matrix
% Y satisfies C*Y = X where C is the 8-by-8 DCT matrix.
```

Your implementation should be fully vectorized (no loops) and submitted to CMS. Hint. Exploit the fact that $C_{8}=T_{3} T_{2} T_{1}$ and $C_{8}^{-1}=C_{n}^{T} D_{n}^{-1}$.

3 JPEG Compression

This problem gives you a snapshot of how JPEG image compression works. Here is the essential story. A picture is a matrix of pixels. We regard the matrix as block matrix with $8 x 8$ blocks. We perform operations on each of the blocks and discover how to "capture its essence" with many fewer than 64 numbers.

The starting point for us is an m-by- n integer matrix A whose entries are between 0 and 255 . We'll call this the picture matrix. For a color image there are three picture matrices, one for red, one for green, and one
for blue. We will present the ideas as if the image is black and white. The calculations that we outline below would be applied separately to the red, green and blue matrices.

Entry $a_{i j}$ is the grayness value of pixel (i, j) with 0 corresponding to black and 255 corresponding to white. Assume $m=8 m_{1}$ and $n=8 n_{1}$ and think of A as an m_{1}-by- n_{1} block matrix with 8 -by- 8 blocks, e.g.,

$A=$| A_{11} | A_{12} | A_{13} | A_{14} | A_{15} |
| :---: | :---: | :---: | :---: | :---: |
| A_{21} | A_{22} | A_{23} | A_{24} | A_{25} |
| A_{31} | A_{32} | A_{33} | A_{34} | A_{35} |
| A_{41} | A_{42} | A_{43} | A_{44} | A_{45} |

$$
\begin{aligned}
& m=32, n=40 \\
& A_{34}=A(17: 24,25: 32)
\end{aligned}
$$

JPEG compression transforms the picture matrix A "block-by-block" to another matrix B

A_{11}	A_{12}	A_{13}	A_{14}	A_{15}
A_{21}	A_{22}	A_{23}	A_{24}	A_{25}
A_{31}	A_{32}	A_{33}	A_{34}	A_{35}
A_{41}	A_{42}	A_{43}	A_{44}	A_{45}

$\rightarrow \quad$| B_{11} | B_{12} | B_{13} | B_{14} | B_{15} |
| :--- | :--- | :--- | :--- | :--- |
| B_{21} | B_{22} | B_{23} | B_{24} | B_{25} |
| B_{31} | B_{32} | B_{33} | B_{34} | B_{35} |
| B_{41} | B_{42} | B_{43} | B_{44} | B_{45} |

according to the rule

$$
B_{i j}=\operatorname{round}\left(\left(C_{8} A_{i j} C_{8}^{T}\right) \cdot / Q\right)
$$

where Q is an 8 -by- 8 quantization matrix. A popular choice is

$$
Q=\left[\begin{array}{rrrrrrrr}
16 & 11 & 10 & 16 & 24 & 40 & 51 & 61 \\
12 & 12 & 14 & 19 & 26 & 58 & 60 & 55 \\
14 & 13 & 16 & 24 & 40 & 57 & 69 & 56 \\
14 & 17 & 22 & 29 & 51 & 87 & 80 & 62 \\
18 & 22 & 37 & 56 & 68 & 109 & 103 & 77 \\
24 & 35 & 55 & 64 & 81 & 104 & 113 & 92 \\
49 & 64 & 78 & 87 & 103 & 121 & 120 & 101 \\
72 & 92 & 95 & 98 & 112 & 100 & 103 & 99
\end{array}\right] .
$$

We refer to B as the JPEG matrix. Let's take a look at the computation of the $B_{i j}$ using an example. Here is a typical block from A, i.e., an 8 -by- 8 patch from the picture:

	75	63	66	67	66	71	83	95
	72	64	71	76	78	82	88	90
	79	76	78	77	74	76	85	91
	83	79	76	67	60	64	79	93
	83	66	65	61	58	64	78	89
	77	71	72	80	91	95	89	79
	79	89	95	100	101	98	92	84
77	105	109	107	97	89	88	90	

We take the DCT of the columns $C_{8} A_{i j}$ and then the rows $\left(C_{8} A_{i j}\right) C_{8}^{T}$ and get

5162.000	-143.657	79.399	-56.735	21.213	26.844	6.911	5.928
-272.682	-70.761	131.075	4.546	40.651	28.310	20.479	9.593
195.475	-8.800	-111.240	-23.561	-16.378	-15.552	-11.692	-7.375
-126.415	-58.711	17.540	77.309	21.566	17.159	13.655	6.470
-96.167	43.771	97.150	-68.698	8.000	-4.257	1.972	-2.129
44.224	18.136	0.204	-8.276	-5.666	-6.305	-2.313	-1.205
6.283	0.644	-6.692	8.778	-2.957	-7.008	-3.760	-2.146
-20.590	8.158	21.505	-11.816	9.812	7.940	3.151	1.757

Notice that entries range from big to small as we move from the upper left corner to the lower right corner. This is the "miracle" of the DCT; it represents $A_{i j}$ in a particularly handy basis so that the important non-zero information is "compressed" into a small part of the matrix.

Now look at the quantization matrix Q above. The pointwise divide $\left(C_{8} A_{i j} C_{8}^{T}\right) \cdot / Q$ has the effect of accentuating the big-to-small drift:

322.6250	-13.0597	7.9399	-3.5460	0.8839	0.6711	0.1355	0.0972
-22.7235	-5.8967	9.3625	0.2393	1.5635	0.4881	0.3413	0.1744
13.9625	-0.6769	-6.9525	-0.9817	-0.4095	-0.2728	-0.1695	-0.1317
-9.0296	-3.4536	0.7973	2.6658	0.4229	0.1972	0.1707	0.1044
-5.3426	1.9896	2.6257	-1.2268	0.1176	-0.0391	0.0192	-0.0276
1.8427	0.5182	0.0037	-0.1293	-0.0699	-0.0606	-0.0205	-0.0131
0.1282	0.0101	-0.0858	0.1009	-0.0287	-0.0579	-0.0313	-0.0212
-0.2860	0.0887	0.2264	-0.1206	0.0876	0.0794	0.0306	0.0177

Rounding this produces

BIJ $=$| 323 | -13 | 8 | -4 | 1 | 1 | 0 | 0 |
| ---: | ---: | ---: | ---: | ---: | :--- | :--- | :--- |
| -23 | -6 | 9 | 0 | 2 | 0 | 0 | 0 |
| 14 | -1 | -7 | -1 | 0 | 0 | 0 | 0 |
| -9 | -3 | 1 | 3 | 0 | 0 | 0 | 0 |
| -5 | 2 | 3 | -1 | 0 | 0 | 0 | 0 |
| 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

This is typical. About 75% of $B_{i j}$'s entries are zero. The rest of the JPEG process (not part of this problem) involves a clever "concatenation" of the nonzero information in all the $B_{i j}$. In the end the number of bits required to represent the picture is typically reduced by a factor of about 20 .

This takes care of the compression. How do we "decompress" a JPEG matrix? The idea is simply to visit each block and "undo" the Q-divide and the DCT's:

$$
\tilde{A}_{i j}=C_{8}^{-1}\left(B_{i j} . * Q\right)\left(C_{8}^{-1}\right)^{T}
$$

The resulting block matrix \tilde{A} encodes the reconstructed image. Complete the following functions so that they perform as specified:

```
    function B = JPEG(A)
%A is an mxn picture matrix and B is its mxn JPEG-compressed analog.
% Assumes that both m and n are divisible by }8
    function B = IJPEG(A)
% A is mxn JPEG-compressed matrix and B is its JPEG decompressed analog.
% Assumes that both m and n are divisible by }8
```

To receive full credit, your implementations must be fully vectorized. Here are some linear algebra/Matlab pointers to help you in this regard:

- Although the function DCT8 is designed to compute products of the form $Y=C_{8} X$, it can also be used to compute products of the form $G=F C_{8}^{T}$ where $F \in \mathbb{R}^{m \times 8}$. It's a 1 -liner: $\mathrm{G}=\mathrm{DCT8}(\mathrm{~F}$ ')'. Likewise, IDCT8 can be used to compute $G=F\left(C_{8}^{-1}\right)^{T}$.
- There are obvious double-loop implementations of JPEG and IJPEG that process one $A_{i j}$ at a time. But by using reshape you can avoid looping. Hint: DCT8(reshape (A,8,m*n/8)) computes the products $C_{8} A_{i j}$ over all i and j.
- The operations involving Q can also be done without loops by making use of the Matlab function kron. Here's a hint:

$$
\mathrm{R}=\operatorname{kron}(\operatorname{ones}(4,5), \mathrm{Q}) \quad \leftrightarrow \quad R=\left[\begin{array}{lllll}
Q & Q & Q & Q & Q \\
Q & Q & Q & Q & Q \\
Q & Q & Q & Q & Q \\
Q & Q & Q & Q & Q
\end{array}\right]
$$

If vectorization is a challenge, then start by getting a working non-vectorized implementation. Then start converting the loops.

Submit both JPEG and IJPEG to CMS. Note: we supply you with a sample jpeg file, but you can try out others for fun. Use Trim to ensure that the pixel dimensions are divisible by 8 .

