
Chapter 9

The Initial Value Problem

§9.1 Basic Concepts

§9.2 The Runge-Kutta Methods

§9.3 The Adams Methods

The goal in the initial value problem (IVP) is to find a function y(t) given its value at some initial time
t0 and a recipe f(t, y) for its slope:

y′(t) = f(t, y(t)), y(t0) = y0.

In applications we may want to plot an approximation to y(t) over a designated interval of interest [t0, tmax]
in an effort to discover qualitative properties of the solution. Or we may require a highly accurate estimate
of y(t) at some single, prescribed value t = T .

The methods we develop produce a sequence of solution snapshots (t1, y1), (t2, y2), . . . that are regarded
as approximations to (t1, y(t1), (t2, y(t2)), etc. All we have at our disposal is the “slope function” f(t, y), best
thought of as a Matlab function f(t,y), that can be called whenever we need information about where
y(t) is “headed.” IVP solvers differ in how they use the slope function.

In §9.1 we use the Euler methods to introduce the basic ideas associated with approximate IVP solving:
discretization, local error, global error, stability, etc. In practice the IVP usually involves a vector of unknown
functions, and the treatment of such problems is also covered in §9.1. In this setting the given slope function
f(t, y) is a vector of scalar slope functions, and its evaluation tells us how each component in the unknown
y(t) vector is changing with t.

The Runge-Kutta and Adams methods are then presented in §9.2 and §9.3 together with the built-in
Matlab IVP solvers ode23 and ode45. We also discuss stepsize control, a topic of great practical importance
and another occasion to show off the role of calculus-based heuristics in scientific computing.

Quality software for the IVP is very complex. Years of research and development stand behind codes like
ode23 and ode45. The implementations that we develop in this chapter are designed to build intuition and,
if anything, are just the first step in the long journey from textbook formula to production software.

9.1 Basic Concepts

A “family” of functions generally satisfies a differential equation of the form y′(t) = f(t, y). The initial
condition y(t0) = y0 singles out one of these family members for the solution to the IVP. For example,
functions of the form y(t) = ce−5t satisfy y′(t) = −5y(t). If we stipulate that y(0) = 1, then y(t) = e−5t is
the unique solution to the IVP. (See Figure 9.1.) Our goal is to produce a sequence of points (ti, yi) that
reasonably track the solution curve as time evolves. The Euler methods that we develop in this section
organize this tracking process around a linear model.
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Solutions to y’(t)  =  −5 y(t)

Figure 9.1 Solution curves

9.1.1 Derivation of the Euler Method

From the initial condition, we know that (t0, y0) is on the solution curve. At this point the slope of the
solution is computable via the function f :

f0 = f(t0 , y0).

To estimate y(t) at some future time t1 = t0 + h0 we consider the following Taylor expansion:

y(t0 + h0) ≈ y(t0) + h0y
′(t0) = y0 + h0f(t0 , y0).

This suggests that we use

y1 = y0 + h0f(t0 , y0)

as our approximation to the solution at time t1. The parameter h0 > 0 is the step, and it can be said that
with the production of y1 we have “integrated the IVP forward” to t = t1.

With y1 ≈ y(t1) in hand, we try to push our knowledge of the solution one step further into the future.
Let h1 be the next step. A Taylor expansion about t = t1 says that

y(t1 + h1) ≈ y(t1) + h1y
′(t1) = y(t1) + h1f(t1 , y(t1)).

Note that in this case the right-hand side is not computable because we do not know the exact solution at
t = t1. However, if we are willing to use the approximations

y1 ≈ y(t1)

and

f1 = f(t1 , y1) ≈ f(t1, y(t1)),

then at time t2 = t1 + h1 we have

y(t2) ≈ y2 = y1 + h1f1.

The pattern is now clear. At each step we evaluate f at the current approximate solution point (tn, yn) and
then use that slope information to get yn+1. The key equation is

yn+1 = yn + hnf(tn , yn),

and its repeated application defines the Euler method:
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n = 0
Repeat:

fn = f(tn, yn)
Determine the step hn > 0 and set tn+1 = tn + hn.
yn+1 = yn + hnfn.

n = n + 1

The script file ShowEuler solicits the time steps interactively and applies the Euler method to the problem
y′ = −5y, y(0) = 1. (See Figure 9.2.) The determination of the step size is crucial.
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Figure 9.2 Five steps of Euler’s method

Our intuition says that we can control error by choosing hn appropriately. Accuracy should increase
with shorter steps. On the other hand, shorter steps mean more f-evaluations as we integrate across the
interval of interest. As in the quadrature problem and the nonlinear equation-solving problem, the number
of f-evaluations usually determines execution time, and the efficiency analysis of any IVP method must
include a tabulation of this statistic. The basic game to be played is to get the required snapshots of y(t)
with sufficient accuracy, evaluating f(t, y) as infrequently as possible. To see what we are up against, we
need to understand how the errors in the local model compound as we integrate across the time interval of
interest.

9.1.2 Local Error, Global Error, and Stability

Assume in the Euler method that yn−1 is exact and let h = hn−1. By subtracting yn = yn−1 + hfn−1 from
the Taylor expansion

y(tn) = yn−1 + hy′(tn−1) +
h2

2
y(2)(η), η ∈ [tn−1, tn],

we find that

y(tn) − yn =
h2

2
y(2)(η).

This is called the local truncation error (LTE) In general, the LTE for an IVP method is the error that
results when a single step is performed with exact “input data.” It is a key attribute of any IVP solver, and
the order of the method is used to designate its form. A method has order k if its LTE goes to zero like
hk+1. Thus, the Euler method has order 1. The error in an individual Euler step depends on the square
of the step and the behavior of the second derivative. Higher-order methods are pursued in the next two
sections.
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A good way to visualize the LTE is to recognize that at each step, (tn, yn) sits on some solution curve
yn(t) that satisfies the differential equation y′(t) = f(t, y(t)). With each step we jump to a new solution
curve, and the size of the jump is the LTE. (See Figure 9.3.)
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Figure 9.3 Jumping trajectories

Distinct from the local truncation error is the global error. The global error gn is the actual difference
between the t = tn solution yn produced by the IVP solver and the true IVP solution y(tn):

gn = y(tn) − yn.

As we have mentioned, the local truncation error in getting yn is defined by

LTEn = yn−1(tn) − yn,

where yn−1(t) satisfies the IVP

y′(t) = f(t, y(t)), y(tn−1) = yn−1.

LTE is tractable analytically and, as we shall see, it can be estimated in practice. However, in applications
it is the global error that is usually of interest. It turns out that it is possible to control global error by
controlling the individual LTEs if the underlying IVP is stable. We discuss this after we prove the following
result.

Theorem 9 consec Assume that, for n = 0:N , a function yn(t) exists that solves the IVP

y′(t) = f(t, y(t)), y(tn) = yn,

where (t0, y0), . . . , (tN , yN ) are given and t0 < t1 < · · · < tN . Define the global error by

gn = y0(tn) − yn

and the local truncation error by

LTEn = yn−1(tn) − yn.

If

fy =
∂f(t, y)

∂y
≤ 0

for all t ∈ [t0, tN ] and none of the trajectories

{(t, yn(t)) : t0 ≤ t ≤ tN}, n = 0:N
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intersect, then for n = 1:N

|gn| ≤

n
∑

k=1

|LTEk|.

Proof If y0(tn) > yn−1(tn), then because fy is negative we have

∫ tn

tn−1

(f(t, y0(t)) − f(t, yn−1(t)) dt < 0.

It follows that

0 < y0(tn) − yn−1(tn) = (y0(tn−1) − yn−1(tn−1)) +

∫ tn

tn−1

(f(t, y0(t)) − f(t, yn−1(t)) dt

< (y0(tn−1) − yn−1(tn−1)) ,

and so
|y0(tn) − yn−1(tn)| ≤ |y0(tn−1) − yn−1(tn−1)|. (9.1)

Likewise, if y0(tn) < yn−1(tn), then

∫ tn

tn−1

(f(t, yn−1(t)) − f(t, y0(t)) dt < 0,

and so

0 < yn−1(tn) − y0(tn) = (yn−1(tn−1) − y0(tn−1)) +

∫ tn

tn−1

(f(t, yn−1(t)) − f(t, y0(t)) dt

< yn−1(tn−1) − y0(tn−1).

Thus, in either case (9.1) holds and so

|gn| = |y0(tn) − yn|

≤ |y0(tn) − yn−1(tn)| + |yn−1(tn) − yn|

< |y0(tn−1) − yn−1(tn−1)| + |yn−1(tn) − yn|

= |gn−1| + |LTEn|.

The theorem follows by induction since g1 = LTE1. �

The theorem essentially says that if ∂f/∂y is negative across the interval of interest, then global error at
t = tn is less than the sum of the local errors made by the IVP solver in reaching tn. The sign of this partial
derivative is tied up with the stability of the IVP. Roughly speaking, if small changes in the initial value
induce correspondingly small changes in the IVP solution, then we say that the IVP is stable. The concept is
much more involved than the condition/stability issues that we talked about in connection with the Ax = b
problem. The mathematics is deep and interesting but beyond what we can do here.

So instead we look at the model problem y′(t) = ay(t), y(0) = c and deduce some of the key ideas. In
this example, ∂f/∂y = a and so Theorem 9 applies if a < 0. We know that the solution y(t) = ceat decays
if and only if a is negative. If ỹ(t) solves the same differential equation with initial value y(0) = c̃, then

|ỹ(t) − y(t)| = |c̃ − c|eat,

showing how “earlier error” is damped out as t increases.
To illustrate how global error might be controlled in practice, consider the problem of computing y(tmax)

to within a tolerance tol, where y(t) solves a stable IVP y′(t) = f(t, y(t)), y(t0) = y0. Assume that a
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fixed-step Euler method is to be used and that we have a bound M2 for |y(2)(t)| on the interval [t0, tmax]. If
h = (tmax − t0)/N is the step size, then from what we know about the local truncation error of the method,

|LTEn| ≤ M2
h2

2
.

Assuming that Theorem 9 applies,

|y(tmax) − yN | ≤

N
∑

n=1

|LTEn| = M2N
h2

2
=

tmax − t0
2

M2h.

Thus, to make this upper bound less than a prescribed tol > 0, we merely set N to be the smallest integer
that satisfies

(tmax − t0)
2

2N
M2 ≤ tol.

Here is an implementation of the overall process:

function [tvals,yvals] = FixedEuler(f,y0,t0,tmax,M2,tol)

% Fixed step Euler method.

%

% f is a handle that references a function of the form f(t,y).

% M2 a bound on the second derivative of the solution to

% y’ = f(t,y), y(t0) = y0

% on the interval [t0,tmax].

% Determine positive n so that if tvals = linspace(t0,tmax,n), then

% y(i) is within tol of the true solution y(tvals(i)) for i=1:n.

n = ceil(((tmax-t0)^2*M2)/(2*tol))+1;

h = (tmax-t0)/(n-1);

yvals = zeros(n,1);

tvals = linspace(t0,tmax,n)’;

yvals(1) = y0;

for k=1:n-1

fval = f(tvals(k),yvals(k));

yvals(k+1) = yvals(k)+h*fval;

end

Figure 9.4 shows the error when this solution framework is applied to the model problem y′ = −y across the
interval [0, 5]. The trouble with this approach to global error control is that (1) we rarely have good bound
information about |y(2)| and (2) it would be better to determine h adaptively so that longer step sizes can
be taken in regions where the solution is smooth. This matter is pursued in §9.3.5.

Rounding errors are also an issue in IVP solving, especially when lots of very short steps are taken. In
Figure 9.5 we plot the errors sustained when we solve y′ = −y, y(0) = 1 across [0, 1] with Euler’s method in a
three-digit floating point environment. The results for steps h =1/140, 1/160, and 1/180 are reported. Note
that the error gets worse as h gets smaller because the step sizes are in the neighborhood of unit roundoff.
However, for the kind of problems that we are looking at, it is the discretization errors that dominate the
discussion of accuracy.

Another issue that colors the performance of an IVP solver is the stability of the method itself. This
is quite distinct from the notion of problem stability discussed earlier. It is possible for a method with a
particular h to be unstable when it is applied to a stable IVP. For example, if we apply the Euler method
to y′(t) = −10y(t), then the iteration takes the form

yn+1 = (1 − 10h)yn.

To ensure that the errors are not magnified as the iteration progresses, we must insist that

|1− 10h| < 1
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Figure 9.5 Roundoff error in fixed-step Euler

(i.e., h < 1/5). For all h that satisfy this criterion, the method is stable. If h > 1/5, then any error δ in
the initial condition will result in a (1 − 10h)nδ contamination of the nth iterate. With this kind of error
magnification, we say that the method is unstable. Different methods have different h restrictions in order to
guarantee stability, and sometimes these restrictions force us to choose h much smaller than we would like.

9.1.3 The Backward Euler Method

To clarify this point about method stability, we examine the backward Euler method. The (forward) Euler
method is derived from a Taylor expansion of the solution y(t) about t = tn. If instead we work with the
approximation

y(tn+1 + h) ≈ y(tn+1) + y′(tn+1)h = y(tn+1) + f(tn+1 , y(tn+1))h

and set h = −hn = (tn − tn+1), then we get

y(tn) ≈ y(tn+1) − hnf(tn+1, y(tn+1)).

Substituting yn for y(tn) and yn+1 for y(tn+1), we are led to
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yn+1 = yn + hnf(tn+1 , yn+1)

and, with repetition, the backward Euler framework:

n = 0
Repeat:

Determine the step hn > 0.
tn+1 = tn + hn.

Let yn+1 solve F (z) = z − hnf(tn+1 , z) − yn = 0.
n = n + 1

Like the Euler method, the backward Euler method is first order. However, the two techniques differ in a
very important aspect. Backward Euler is an implicit method because it defines yn+1 implicitly. For a simple
problem like y′ = ay this poses no difficulty:

yn+1 = yn + hnayn+1 =
1

1 − hna
yn.

Observe that if a < 0, then the method is stable for all choices of positive step size. This should be contrasted
with the situation in the Euler setting, where |1 + ah| < 1 is required for stability.

Euler’s is an example of an explicit method, because yn+1 is defined explicity in terms of quantities already
computed. [e.g., yn, f(tn , yn)]. Implicit methods tend to have better stability properties than their explicit
counterparts. But there is an implementation penalty to be paid, because yn+1 is defined as a zero of a
nonlinear function. In backward Euler, yn+1 is a zero of F (z) = z − hnf(tn+1, z). Fortunately, this does
not necessarily require the application of the Chapter 8 root finders. A simpler, more effective approach is
presented in §9.3.

9.1.4 Systems

We complete the discussion of IVP solving basics with comments about systems of differential equations. In
this case the unknown function y(t) is a vector of unknown functions:

y(t) =







z1(t)
...

zd(t)






.

(We name the component functions with a z instead of a y to avoid confusion with earlier notation.) In
this case, we are given an initial value for each component function and a recipe for its slope. This recipe
generally involves the value of all the component functions:







z′1(t)
...

z′d(t)






=







f1(t, z1(t), . . . , zd(t))
...

fm(t, z1(t), . . . , zd(t))







z1(t0) = z10

...
zd(t0) = zd0

.

In vector language, y′(t) = f(t, y(t)), y(t0) = y0, where the y’s are now column d-vectors. Here is a d = 2
example:

u′(t) = 2u(t) − .01u(t)v(t)
v′(t) = −v(t) + .01u(t)v(t)

, u(0) = u0, v(0) = v0.

It describes the density of rabbit and fox populations in a classical predator-prey model. The rate of change
of the rabbit density u(t) and the fox density v(t) depend on the current rabbit/fox densities.

Let’s see how the derivation of Euler’s method proceeds for a systems problem like this. We start with
a pair of time-honored Taylor expansions:

u(tn+1) ≈ u(tn) + u′(tn)hn = u(tn) + hn(2u(tn) − .01u(tn)v(tn))

v(tn+1) ≈ v(tn) + v′(tn)hn = v(tn) + hn(−v(tn) + .01u(tn)v(tn))
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Here (as usual), tn+1 = tn + hn. With the definitions

yn =

[

un

vn

]

≈

[

u(tn)
v(tn)

]

= y(tn)

and

fn = f(tn , yn) =

[

2un − .01unvn

−vn + .01unvn

]

≈

[

2u(tn) − .01u(tn)v(tn)
−v(tn) + .01u(tn)v(tn)

]

= f(tn, y(tn)),

we obtain he following vector implementation of the Euler method:
[

un+1

vn+1

]

=

[

un

vn

]

+ hn

[

2un − .01unvn

−vn + .01unvn

]

.

In full vector notation, this can be written as

yn+1 = yn + hnfn,

which is exactly the same formula that we developed in the scalar case.
As we go through the next two sections presenting more sophisticated IVP solvers, we shall do so for

scalar (d = 1) problems, being mindful that all method-defining equations apply at the system level with no
modification.

Systems can arise in practice from the conversion of higher-order IVPs. In a kth order IVP, we seek a
function y(t) that satisfies

y(k)(t) = f(t, y(t), y(1)(t), . . . , y(k−1)(t)) where



















y(t0) = y0

y(1)(t0) = y
(1)
0

...

y(k−1)(t0) = y
(k−1)
0

and y0, y
(1)
0 , . . . , y

(k−1)
0 are given initial values. Higher order IVPs can be solved through conversion to a

system of first-order IVPs. For example, to solve

v′′(t) = 2v(t) + v′(t) sin(t), v(0) = α, v′(0) = β,

we define z1(t) = v(t) and z2(t) = v′(t). The problem then transforms to

z′1(t) = z2(t)
z′2(t) = 2z1(t) + z2(t) sin(t)

, z1(0) = α, z2(0) = β.

Problems

P9.1.1 Produce a plot of the solution to

y′(t) = −ty +
1

y2
, y(1) = 1

across the interval [1,2]. Use the Euler method.

P9.1.2 Compute an approximation to y(1) where

x′′(t) = (3 − sin(t))x′(t) + x(t)/(1 + [y(t)]2),

y′(t) = − cos(t)y(t) − x′(t)/(1 + t2),

x(0) = 3, x′(0) = −1, and y(0) = 4. Use the forward Euler method with fixed step determined so that three significant digits of
accuracy are obtained. Hint: Define z(t) = x′(t) and rewrite the recipe for x′′ as a function of x, y, and z. This yields a d = 3
system.

P9.1.3 Plot the solutions to

y′(t) =

»

−1 4
−4 −1

–

y(t), y(0) =

»

2
−1

–

across the interval [0,3].

P9.1.4 Consider the initial value problem
Ay′(t) = By(t), y(0) = y0,

where A and B are given n-by-n matrices with A nonsingular. For fixed step size h, explain how the backwards Euler method
can be used to compute approximate solutions at t = kh, k = 1:100.
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9.2 The Runge-Kutta Methods

In an Euler step, we “extrapolate into the future” with only a single sampling of the slope function f(t, y).
The method has order 1 because its LTE goes to zero as h2. Just as we moved beyond the trapezoidal
rule in Chapter 4, so we must now move beyond the Euler framework with more involved models of the
slope function. In the Runge-Kutta framework, we sample f at several judiciously chosen spots and use the
information to obtain yn+1 from yn with the highest possible order of accuracy.

9.2.1 Derivation

The Euler methods evaluate f once per step and have order 1. Let’s sample f twice per step and see if we
can obtain a second-order method. We arrange it so that the second evaluation depends on the first:

k1 = hf(tn , yn)

k2 = hf(tn + αh, yn + βk1)

yn+1 = yn + ak1 + bk2 .

Our goal is to choose the parameters α, β, a, and b so that the LTE is O(h3). From the Taylor series we
have

y(tn+1) = y(tn) + y(1)(tn)h + y(2)(tn)
h2

2
+ O(h3).

Since

y(1)(tn) = f

y(2)(tn) = ft + fyf

where

f = f(tn , yn)

ft =
∂f(tn , yn)

∂t

fy =
∂f(tn , yn)

∂y
,

it follows that

y(tn+1) = y(tn) + fh + (ft + fyf)
h2

2
+ O(h3). (9.2)

On the other hand,

k2 = hf(tn + αh, yn + βk1) = h
(

f + αhft + βk1fy + O(h2)
)

and so

yn+1 = yn + ak1 + bk2 = yn + (a + b) fh + b (αft + βffy )h2 + O(h3). (9.3)

For the LTE to be O(h3), the equation

y(tn+1) − yn+1 = O(h3)

must hold. To accomplish this, we compare terms in (9.2) and (9.3) and require

a + b = 1

2bα = 1

2bβ = 1 .
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There are an infinite number of solutions to this system, the canonical one being a = b = 1/2 and α = β = 1.
With this choice the LTE is O(h3), and we obtain a second-order Runge-Kutta method:

k1 = hf(tn , yn)

k2 = hf(tn + h, yn + k1)

yn+1 = yn + (k1 + k2)/2 .

The actual expression for the LTE is given by

LTE(RK2) =
h3

12
(ftt + 2ffty + f2fyy − 2ftfy − 2ff2

y ),

where the partials on the right are evaluated at some point in [tn, tn + h]. Notice that two f-evaluations are
required per step.

The most famous Runge-Kutta method is the classical fourth order method:

k1 = hf(tn , yn)

k2 = hf(tn + h
2 , yn + 1

2k1)

k3 = hf(tn + h
2 , yn + 1

2k2)

k4 = hf(tn + h, yn + k3)

yn+1 = yn + 1
6(k1 + 2k2 + 2k3 + k4) .

This can be derived using the same Taylor expansion technique illustrated previously. It requires four
f-evaluations per step.

The function RKStep can be used to carry out a Runge-Kutta step of prescribed order. Here is its
specification along with an abbreviated portion of the implementation:

function [tnew,ynew,fnew] = RKstep(f,tc,yc,fc,h,k)

% f is a handle that references a function of the form f(t,y)

% where t is a scalar and y is a column d-vector.

% yc is an approximate solution to y’(t) = f(t,y(t)) at t=tc.

% fc = f(tc,yc).

% h is the time step.

% k is the order of the Runge-Kutta method used, 1<=k<=5.

% tnew=tc+h, ynew is an approximate solution at t=tnew, and

% fnew = f(tnew,ynew).

if k==1

k1 = h*fc;

ynew = yc + k1;

elseif k==2

k1 = h*fc;

k2 = h*f(tc+(h),yc+(k1));

ynew = yc + (k1 + k2)/2;

elseif k==3

k1 = h*fc;

k2 = h*f(tc+(h/2),yc+(k1/2));

k3 = h*f(tc+h,yc-k1+2*k2);

ynew = yc + (k1 + 4*k2 + k3)/6;

elseif k==4

:

end

tnew = tc+h;

fnew = f(tnew,ynew);
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As can be imagined, symbolic algebra tools are useful in the derivation of such an involved sampling and
combination of f-values.

Problems

P9.2.1 The RKF45 method produces both a fourth order estimate and a fifth order estimate using six function evaluations:

k1 = hf(tn, yn)

k2 = hf(tn + h
4
, yn + 1

4
k1)

k3 = hf(tn + 3h
8

, yn + 3
32

k1 + 9
32

k2)

k4 = hf(tn + 12h
13

, yn + 1932
2197

k1 − 7200
2197

k2 + 7296
2197

k3)

k5 = hf(tn + h, yn + 439
216

k1 − 8k2 + 3680
513

k3 − 845
4104

k4)

k6 = hf(tn + h
2
, yn − 8

27
k1 + 2k2 − 3544

2565
k3 + 1859

4104
k4 − 11

40
k5)

yn+1 = yn + 25
216

k1 + 1408
2565

k3 + 2197
4104

k4 − 1
5
k5

zn+1 = yn + 16
135

k1 + 6656
12825

k3 + 28561
56430

k4 − 9
50

k5 + 2
55

k6 .

Write a script that discovers which of yn+1 and zn+1 is the fourth order estimate and which is the fifth order estimate.

9.2.2 Implementation

Runge-Kutta steps can obviously be repeated, and if we keep the step size fixed, then we obtain the following
implementation:

function [tvals,yvals] = FixedRK(f,t0,y0,h,k,n)

% [tvals,yvals] = FixedRK(fname,t0,y0,h,k,n)

% Produces approximate solution to the initial value problem

%

% y’(t) = f(t,y(t)) y(t0) = y0

%

% using a strategy that is based upon a k-th order Runge-Kutta method. Stepsize

% is fixed. f is a handle that references the function f, t0 is the initial time,

% y0 is the initial condition vector, h is the stepsize, k is the order of

% method (1<=k<=5), and n is the number of steps to be taken,

% tvals(j) = t0 + (j-1)h, j=1:n+1

% yvals(j,:) = approximate solution at t = tvals(j), j=1:n+1

tc = t0; tvals = tc;

yc = y0; yvals = yc’;

fc = f(tc,yc);

for j=1:n

[tc,yc,fc] = RKstep(f,tc,yc,fc,h,k);

yvals = [yvals; yc’];

tvals = [tvals tc];

end

The function file ShowRK can be used to illustrate the performance of the Runge-Kutta methods on the
IVP y′ = −y, y(0) = 1. The results are reported in Figure 9.6. All the derivatives of f are “nice,” which
means that if we increase the order and keep the step size fixed, then the errors should diminish by a factor
of h. Thus for n = 500, h = 1/100 and we find that the error in the kth order method is about 100−k.

Do not conclude from the example that higher-order methods are necessarily more accurate. If the higher
derivatives of the solution are badly behaved, then it may well be the case that a lower-order method gives
more accurate results. One must also be mindful of the number of f-evaluations that are required to purchase
a given level of accuracy. The situation is analogous to what we found in the quadrature unit. Of course,
the best situation is for the IVP software to handle the selection of method and step.
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Figure 9.6 Runge-Kutta error

Problems

P9.2.2 For k = 1:5, how many f -evaluations does the kth-order Runge-Kutta method require to solve y′(t) = −y(t), y(0) = 1
with error ≤ 10−6 across [0,1]?

9.2.3 The Matlab IVP Solving Tools

Matlab supplies a number of techniques for solving initial value problems. We start with ode23, which is
based on a pair of second- and third-order Runge-Kutta methods. With two methods for predicting yn+1,
it uses the discrepancy of the predictions to determine heuristically whether the current step size is “safe”
with respect to the given tolerances.

Both codes can be used to solve systems, and to illustrate how they are typically used, we apply them
to the following initial value problem:

ẍ(t) = −
x(t)

(x(t)2 + y(t)2)3/2 x(0) = .4 ẋ(0) = 0

ÿ(t) = −
y(t)

(x(t)2 + y(t)2)3/2 y(0) = 0 ẏ(0) = 2 .

These are Newton’s equations of motion for the two-body problem. As t ranges from 0 to 2π, (x(t), y(t))
defines an ellipse.

Both ode23 and ode45 require that we put this problem in the standard y′ = f(t, y) form. To that end,
we define u1(t) = x(t), u2(t) = ẋ(t), u3(t) = y(t), u4(t) = ẏ(t). The given IVP problem transforms to

u̇1(t) = u2(t) u1(0) = .4

u̇2(t) = −u1(t)/(u1(t)
2 + u3(t)

2)3/2 u2(0) = 0

u̇3(t) = u4(t) u3(0) = 0

u̇4(t) = −u3(t)/(u1(t)
2 + u3(t)

2)3/2 u4(0) = 2 .

We then write the following function, which returns the derivative of the u vector:
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function up = Kepler(t,u)

% up = Kepler(t,u)

% t (time) is a scalar and u is a 4-vector whose components satisfy

%

% u(1) = x(t) u(2) = (d/dt)x(t)

% u(3) = y(t) u(4) = (d/dt)y(t)

%

% where (x(t),y(t)) are the equations of motion in the 2-body problem.

%

% up is a 4-vector that is the derivative of u at time t.

r3 = (u(1)^2 + u(3)^2)^1.5;

up = [ u(2) ;...

-u(1)/r3 ;...

u(4) ;...

-u(3)/r3] ;

With this function available, we can call ode23 and plot various results:

tInitial = 0;

tFinal = 2*pi;

uInitial = [ .4; 0 ; 0 ; 2];

tSpan = [tInitial tFinal];

[t, u] = ode23(@Kepler, tSpan, uInitial);

ode23 requires that we pass the name of the “slope function”, the span of integration, and the initial
condition vector. The slope function must be of the form f(t,y) where t is a scalar and y is a vector. It
must return a column vector. In this call the tSpan vector simply specifies the initial and final times. The
output produced is a column vector of times t and a matrix u of solution snapshots. If n = length(t) then
(a) t(0) = tInitial, t(n) = tFinal, and u(k,:) is an approximation to the solution at time t(k). The
time step lengths and (therefore their number) is determined by the default error tolerance: Reltol = 10−3

and AbsTol = 10−6. Basically, ode23 integrates from tInitial to tFinal “as quick as possible” subject to
these two tolerances. We can display the orbit via

plot(u(:,1),u(:,3))

i.e., by plotting the computed y-values against the computed x-values. (See Figure 9.7.) From the output
we display in Figure 9.8 the step lengths with

plot(t(2:length(t)),diff(t))
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Figure 9.7 Generation of the Orbit via ode23
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Figure 9.9 Component solutions

and in Figure 9.9 the component solutions via

subplot(2,2,1), plot(t,u(:,1)), title(’x(t)’)

subplot(2,2,2), plot(t,u(:,2)), title(’y(t)’)

subplot(2,2,3), plot(t,u(:,3)), title(’x’’(t)’)

subplot(2,2,4), plot(t,u(:,4)), title(’y’’(t)’)

The function ode23 can also be asked to return the solution at specified times. Here is a script that generates
20 solution snapshots and does a spline fit of the output

tSpan = linspace(tInitial,tFinal,20);

[t, u] = ode23(’Kepler’, tSpan, uInitial);

xvals = spline(t,u(:,1),linspace(0,2*pi));

yvals = spline(t,u(:,3),linspace(0,2*pi));

plot(xvals,yvals,u(:,1),u(:,3),’o’)

(See Figure 9.10.)
Using the function odeset it is possible to specify various parameters that are used by ode23. For

example,

tSpan = [tInitial tFinal];

options = odeset(’AbsTol’,.00000001,’RelTol’,.000001,’stats’,’on’);

disp(sprintf(’\n Stats for ode23 Call:\n’))

[t, u] = ode23(’Kepler’, tSpan, uInitial,options);
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Figure 9.10 Specified output times and spline fit

overrides the default tolerance for relative error and absolute error and activates the ’stats’ option. As
expected, the time steps are now shorter as shown in Figure 9.11.
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Figure 9.11 ode23 Timesteps with more stringent tolerances

The “cost” statistics associated with the call are displayed in the command window:

517 successful steps

0 failed attempts

1552 function evaluations

0 partial derivatives

0 LU decompositions

0 solutions of linear systems

Sometimes a higher order method can achieve the same accuracy with fewer function evaluations. To
illustrate this we apply ode45 to the same problem:

tSpan = [tInitial tFinal];

options = odeset(’AbsTol’,.00000001,’RelTol’,.000001,’stats’,’on’);

disp(sprintf(’\n Stats for ode45 Call:\n’))

[t, u] = ode45(’Kepler’, tSpan, uInitial,options);
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ode45 is just like ode23 except that it uses a mix of 4th and 5th order Runge-Kutta methods. For this
problem ode45 can take decidedly longer time steps in the “high curvature” regions of the orbit. (Compare
Figure 9.11 and Figure 9.12.) The output statistics reveal that just 337 function evaluations are required.
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Figure 9.12 Stepsize with ode45

Problems

P9.2.3 This is about ode23 vs ode45. Suppose it takes T1 seconds to execute [t,y] = ode23(@MyF,[0,4],y0) and T2 seconds
to execute [t,y] = ode45(@MyF,[0,8],y0) What factors determine T2/T1?

P9.2.4 Our goal is to produce a plot of an approximate solution to the boundary value problem

y′′(t) = f(t,y(t), y′(t)), y(a) = α, y(b) = β.

Assume the availability of a Matlab function f(t,y,yp). (a) Write a function g(mu) that returns an estimate of y(b) where
y(t) solves

y′′(t) = f(t, y(t), y′(t)), y(a) = α, y′(a) = µ.

Use ode23 and define the function that must be passed to it. (b) How could µ∗ be computed so that g(µ∗) = β? (c) Finally,
how could a plot of the boundary value problem solution across [a, b] be obtained?

P9.2.5 Consider the following initial value problem

Aẏ = By + u(t), y(0) = y0,

where A ∈ IRn×n is nonsingular, B ∈ IRn×n, and u(t) ∈ IRn. Making effective use of ode45 with default tolerances, write a
Matlab fragment that assigns to yFinal an estimate of y(tfinal). Write out completely the function that your script passes to
ode45. Assume that A, B, y0, and tfinal are given and that u.m implements u(t).

P9.2.6 Consider the following IVP:

ẍ(t) = 2ẏ(t) + x(t) −
µ∗(x(t) + µ)

r3
1

−
µ(x(t) − µ∗)

r3
2

, x(0) = 1.2 ẋ(0) = 0,

ÿ(t) = −2ẋ(t) + y(t) −
µ∗y(t)

r3
1

−
µy(t)

r3
2

, y(0) = 0 ẏ(0) = −1.0493575,

where µ = 1/82.45, µ∗ = 1 − µ, and

r1 =
q

((x(t) + µ)2 + y(t)2

r2 =
q

((x(t) − µ∗)2 + y(t)2

It describes the orbit of a spacecraft that starts behind the Moon (located at (1 − µ, 0)), swings by the Earth (located at
(−µ, 0)), does a large loop, and returns to the vicinity of the Earth before returning to its initial position behind the Moon at
time T0 = 6.19216933. Here, µ = 1/82.45.

(a) Apply ode45 with tinitial = 0, tfinal = T0, and tol = 10−6. Plot the orbit twice, once with the default “pen” and once
with ’.’ so that you can see how the time step varies. (b) Using the output from the ode45 call in part (a), plot the distance
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of the spacecraft to Earth as a function of time across [0, T0]. Use spline to fit the distance “snapshots.” To within a mile,
how close does the spacecraft get to the Earth’s surface? Assume that the Earth is a sphere of radius 4000 miles and that the
Earth-Moon separation is 238,000 miles. Use fmin with an appropriate spline for the objective function. Note that the IVP
is scaled so that one unit of distance is 238,000 miles. (c) Repeat Part (a) with ode23. (d) Apply ode45 with tinitial = 0,
tfinal = 2T0, and tol = 10−6, but change ẏ(0) to and ẏ(0) = −.8. Plot the orbit. For a little more insight into what happens,
repeat with tfinal = 8 ∗ T0. (e) To the nearest minute, compute how long the spacecraft is hidden to an observer on earth
as it swings behind the Moon during its orbit. Assume that the observer is at (−µ, 0) and that the Moon has diameter 2160
miles. Make intelligent use of fzero. (f) Find t∗ in the interval [0, T0/2] so that at time t∗, the spacecraft is equidistant from
the Moon and the Earth.

9.3 The Adams Methods

From the fundamental theorem of calculus, we have

y(tn+1) = y(tn) +

∫ tn+1

tn

y′(t)dt,

and so

y(tn+1) = y(tn) +

∫ tn+1

tn

f(t, y(t))dt.

The Adams methods are based on the idea of replacing the integrand with a polynomial that interpolates
f(t, y) at selected solution points (tj, yj). The kth order Adams-Bashforth method is explicit and uses the
current point (tn, yn) and k − 1 “historical” points. The kth order Adams-Moulton method is implicit and
uses the future point (tn+1, yn+1), the current point, and k − 2 historical points. The implementation and
properties of these two IVP solution frameworks are presented in this section.

9.3.1 Derivation of the Adams-Bashforth Methods

In the kth order Adams-Bashforth (AB) method, we set

yn+1 = yn +

∫ tn+1

tn

pk−1(t)dt, (9.4)

where pk−1(t) interpolates f(t, y) at (tn−j, yn−j), j = 0:k− 1. We are concerned with the first five members
of this family:

Order Interpolant AB Interpolation Points

1st constant (tn, fn)

2nd linear (tn, fn), (tn−1, fn−1)

3rd quadratic (tn, fn), (tn−1, fn−1), (tn−2, fn−2)

4th cubic (tn, fn), (tn−1, fn−1), (tn−2, fn−2), (tn−3, fn−3)

5th quartic (tn, fn), (tn−1, fn−1), (tn−2, fn−2), (tn−3, fn−3), (tn−3, fn−3)

If k = 1, then the one-point Newton-Cotes rule is applied and we get

yn+1 = yn + hnf(tn , yn) hn = tn+1 − tn.

Thus the first-order AB method is the Euler method.
In the second-order Adams-Bashforth method, we set

pk−1(t) = fn−1 +
fn − fn−1

hn−1
(t − tn−1)

in (9.4). This is the linear interpolant of (tn−1, fn−1) and (tn, fn), and we obtain
∫ tn+1

tn

f(t, y(t))dt ≈

∫ tn+1

tn

(

fn−1 +
fn − fn−1

hn−1
(t − tn−1)

)

dt

=
hn

2

(

hn + 2hn−1

hn−1
fn −

hn

hn−1
fn−1

)

.
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If hn = hn−1 = h, then from (9.4)

yn+1 = yn +
h

2
(3fn − fn−1) .

The derivation of higher-order AB methods is analogous. A table of the first five Adams-Bashforth
methods along with their respective local truncation errors is given in Figure 9.13. The derivation of the

Order Step LTE

1 yn+1 = yn + hfn
h2

2
y(2)(η)

2 yn+1 = yn + h
2

(3fn − fn−1)
5h3

12
y(3)(η)

3 yn+1 = yn + h
12

(23fn − 16fn−1 + 5fn−2)
3h4

8
y(4)(η)

4 yn+1 = yn + h
24

(55fn − 59fn−1 + 37fn−2 − 9fn−3)
251h5

720
y(5)(η)

5 yn+1 = yn + h
720

(1901fn − 2774fn−1 + 2616fn−2 − 1274fn−3 + 251fn−4)
95h6

288
y(6)(η)

Figure 9.13 Adams-Bashforth family

LTEs for the AB methods is a straightforward computation that involves the Newton-Cotes error:

y(tn+1) − yn =

∫ tn+1

tn

(f(t, yn(t)) − pk−1(t))dt.

9.3.2 Implementation

To facilitate experimentation with the AB method, here is a function that can carry out any of the methods
specified in Figure 9.13:

function [tnew,ynew,fnew] = ABstep(f,tc,yc,fvals,h,k)

% f is a handle that references a function of the form f(t,y)

% where t is a scalar and y is a column d-vector.

%

% yc is an approximate solution to y’(t) = f(t,y(t)) at t=tc.

%

% fvals is an d-by-k matrix where fvals(:,i) is an approximation

% to f(t,y) at t = tc +(1-i)h, i=1:k

%

% h = the time step.

% k = the order of the AB method used, 1<=k<=5.

% tnew = tc+h.

% ynew = an approximate solution at t=tnew.

% fnew = f(tnew,ynew).

if k==1, ynew = yc + h*fvals;

elseif k==2, ynew = yc + (h/2)*(fvals*[3;-1]);

elseif k==3, ynew = yc + (h/12)*(fvals*[23;-16;5]);

elseif k==4, ynew = yc + (h/24)*(fvals*[55;-59;37;-9]);

elseif k==5, ynew = yc + (h/720)*(fvals*[1901;-2774;2616;-1274;251]);

end

tnew = tc+h;

fnew = f(tnew,ynew);
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In the systems case, fval is a matrix and ynew is yc plus a matrix-vector product.
Note that k snapshots of f(t, y) are required, and this is why Adams methods are called multistep

methods. Because of this there is a “start-up” issue with the Adams-Bashforth method: How do we perform
the first step when there is no “history”? There are several approaches to this, and care must be taken to
ensure that the accuracy of the generated start-up values is consistent with the overall accuracy aims. For
a kth order Adams framework we use a kth order Runge-Kutta method, to get fj = f(tj , yj), j = 1:k − 1.
See the function ABStart. Using ABStart we are able to formulate a fixed-step Adams-Bashforth solver:

function [tvals,yvals] = FixedAB(f,t0,y0,h,k,n)

% Produces an approximate solution to the initial value problem

% y’(t) = f(t,y(t)), y(t0) = y0 using a strategy that is based upon a k-th order

% Adams-Bashforth method. Stepsize is fixed.

%

% f = handle that references the function f.

% t0 = initial time.

% y0 = initial condition vector.

% h = stepsize.

% k = order of method. (1<=k<=5).

% n = number of steps to be taken,

%

% tvals(j) = t0 + (j-1)h, j=1:n+1

% yvals(j,:) = approximate solution at t = tvals(j), j=1:n+1

[tvals,yvals,fvals] = ABStart(f,t0,y0,h,k);

tc = tvals(k);

yc = yvals(k,:)’;

fc = fvals(:,k);

for j=k:n

% Take a step and then update.

[tc,yc,fc] = ABstep(f,tc,yc,fvals,h,k);

tvals = [tvals tc];

yvals = [yvals; yc’];

fvals = [fc fvals(:,1:k-1)];

end

If we apply this algorithm to the model problem, y′ = −y, y(0) = 1. (See Figure 9.14.) Notice that for the
kth-order method, the error goes to zero as hk, where h = 1/n.
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Figure 9.14 kth order Adams-Bashforth error
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9.3.3 The Adams-Moulton Methods

The kth order Adams-Moulton (AM) method is just like the kth-order Adams-Bashforth method, but the
points at which we interpolate the integrand in

yn+1 = yn +

∫ tn+1

tn

pk−1(t)dt

are “shifted” one time step into the future. In particular, the kth-order Adams-Moulton method uses a
degree k − 1 interpolant of the points (tn+1−j , fn+1−j), j = 0:k − 1:

Order Interpolant AM Interpolation Points

1st constant (tn+1, fn+1)

2nd linear (tn+1, fn+1), (tn, fn)

3rd quadratic (tn+1, fn+1), (tn, fn), (tn−1, fn−1)

4th cubic (tn+1, fn+1), (tn, fn), (tn−1, fn−1), (tn−2, fn−2)

5th quartic (tn+1, fn+1), (tn, fn), (tn−1, fn−1), (tn−2, fn−2), (tn−3, fn−3)

For example, in the second-order Adams-Moulton method we set

pk−1(t) = fn +
fn+1 − fn

hn
(t − tn),

Order Step LTE

1 yn+1 = yn + hf(tn+1, yn+1) −h2

2
y(2)(η)

2 yn+1 = yn + h
2

(f(tn+1, yn+1) + fn) −h3

12
y(3)(η)

3 yn+1 = yn + h
12

(5f(tn+1, yn+1) + 8fn − fn−1) −h4

24
y(4)(η)

4 yn+1 = yn + h
24

(9f(tn+1, yn+1) + 19fn − 5fn−1 + fn−2) −19h5

720
y(5)(η)

5 yn+1 = yn + h
720

(251f(tn+1, yn+1) + 646fn − 264fn−1 + 106fn−2 − 19fn−3) −3h6

160
y(6)(η)

Figure 9.15 The Adams-Moulton methods

the linear interpolant of (tn, fn) and (tn+1, fn+1). We then obtain the approximation

∫ tn+1

tn

f(t, y(t))dt ≈

∫ tn+1

tn

(

fn +
fn+1 − fn

hn
(t − tn)

)

=
hn

2
(fn + fn+1),

and thus

yn+1 = yn +
hn

2
(f(t, yn+1) + fn).

As in the backward Euler method, which is just the first order Adams-Moulton method, yn+1 is specified
implicitly through a nonlinear equation. The higher-order Adams-Moulton methods are derived similarly,
and in Figure 9.15 we specify the first five members in the family.

The LTE coefficient for any AM method is slightly smaller than the LTE coefficients for the corresponding
AB method. Analogous to ABstep, we have
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function [tnew,ynew,fnew] = AMstep(f,tc,yc,fvals,h,k)

% Single step of the kth order Adams-Moulton method.

%

% f is a handle that references a function of the form f(t,y)

% where t is a scalar and y is a column d-vector.

%

% yc is an approximate solution to y’(t) = f(t,y(t)) at t=tc.

%

% fvals is an d-by-k matrix where fvals(:,i) is an approximation

% to f(t,y) at t = tc +(2-i)h, i=1:k.

%

% h is the time step.

%

% k is the order of the AM method used, 1<=k<=5.

%

% tnew=tc+h

% ynew is an approximate solution at t=tnew

% fnew = f(tnew,ynew).

if k==1, ynew = yc + h*fvals;

elseif k==2, ynew = yc + (h/2)*(fvals*[1;1]);

elseif k==3, ynew = yc + (h/12)*(fvals*[5;8;-1]);

elseif k==4, ynew = yc + (h/24)*(fvals*[9;19;-5;1]);

elseif k==5, ynew = yc + (h/720)*(fvals*[251;646;-264;106;-19]);

end

tnew = tc+h;

fnew = f(tnew,ynew);

We could discuss methods for the solution of the nonlinear F (z) = 0 that defines yn+1. However, we have
other plans for the Adams-Moulton methods that circumvent this problem.

9.3.4 The Predictor-Corrector Idea

A very important framework for solving IVPs results when we couple an Adams-Bashforth method with an
Adams-Moulton method of the same order. The idea is to predict yn+1 using an Adams-Bashforth method
and then to correct its value using the corresponding Adams-Moulton method. In the second-order case,
AB2 gives

y
(P)
n+1 = yn +

h

2
(3fn − fn−1),

which then is used in the right-hand side of the AM2 recipe to render

y
(C)
n+1 = yn +

h

2

(

f(tn+1 , y
(P)
n+1) + fn

)

.

For general order we have developed a function

[tnew,yPred,fPred,yCorr,fCorr] = PCstep(f,tc,yc,fvals,h,k)

that implements this idea. It involves a simple combination of ABStep and AMStep:

[tnew,yPred,fPred] = ABstep(f,tc,yc,fvals,h,k);

[tnew,yCorr,fCorr] = AMstep(f,tc,yc,[fPred fvals(:,1:k-1)],h,k);
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The repeated application of this function defines the fixed-step predictor-corrector framework:

function [tvals,yvals] = FixedPC(f,t0,y0,h,k,n)

% Produces an approximate solution to the initial value problem

% y’(t) = f(t,y(t)), y(t0) = y0 using a strategy that is based upon a k-th order

% Adams Predictor-Corrector framework. Stepsize is fixed.

%

% f = handle that references the function f.

% t0 = initial time.

% y0 = initial condition vector.

% h = stepsize.

% k = order of method. (1<=k<=5).

% n = number of steps to be taken,

%

% tvals(j) = t0 + (j-1)h, j=1:n+1

% yvals(j,:) = approximate solution at t = tvals(j), j=1:n+1

[tvals,yvals,fvals] = StartAB(f,t0,y0,h,k);

tc = tvals(k);

yc = yvals(:,k)’;

fc = fvals(:,k);

for j=k:n

% Take a step and then update.

[tc,yPred,fPred,yc,fc] = PCstep(f,tc,yc,fvals,h,k);

tvals = [tvals tc];

yvals = [yvals; yc’];

fvals = [fc fvals(:,1:k-1)];

end

The error associated with this method when applied to the model problem is given in Figure 9.16 on the
next page.
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Figure 9.16 kth Order predictor-corrector error

Problems

P9.3.1 Write functions
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[tvals,yvals] = AFixedAB(A,t0,y0,h,k,n)

[tvals,yvals] = AFixedAM(A,t0,y0,h,k,n)

that can be used to solve the IVP y′(t) = Ay(t), y(t0) = y0, where A is a d-by-d matrix. In AFixedAM a linear system will have
to be solved at each step. Get the factorization “out of the loop.”

P9.3.2 Use FixedAB and FixedPC to solve the IVP described in problem P9.2.3. Explore the connections between step size,

order, and the number of required function evaluations.

9.3.5 Stepsize Control

The idea behind error estimation in adaptive quadrature is to compute the integral in question in two ways,
and then accept or reject the better estimate based on the observed discrepancies. The predictor-corrector

framework presents us with a similar opportunity. The quality of y
(C)
n+1 can be estimated from |y

(C)
n+1 − y

(P)
n+1|.

If the error is too large, we can reduce the step. If the error is too small, then we can lengthen the step.
Properly handled, we can use this mechanism to integrate the IVP across the interval of interest with steps
that are as long as possible given a prescribed error tolerance. In this way we can compute the required
solution, more or less minimizing the number of f evaluations. The Matlab IVP solvers ode23 and ode45

are Runge-Kutta based and do just that. We develop a second-order adaptive step solver based on the
second-order AB and AM methods.

Do we accept y(C) as our chosen yn+1? If ∆ = |y
(P)
n+1 − y

(C)
n+1| is small, then our intuition tells us that

y
(C)
n+1 is probably fairly good and worth accepting as our approximation to y(tn+1). If not, there are two

possibilities. We could refine y
(C)
n+1 through repeated application of the AM2 formula:

yn+1 = y
(C)
n+1

Repeat:

yn+1 = yn + h
2 (f(tn+1, yn+1) + fn)

A reasonable termination criterion might be to quit as soon as two successive iterates differ by a small amount.
The goal of the iteration is to produce a solution to the AM2 equation. Alternatively, we could halve h and
try another predict/correct step [i.e., produce an estimate yn+1 of y(tn +h/2)]. The latter approach is more
constructive because it addresses the primary reason for discrepancy between the predicted and corrected
value: an overly long step h.

To implement a practical step size control process, we need to develop a heuristic for estimating the error

in y
(c)
n+1 based on the discrepancy between it and y

(P)
n+1. The idea is to manipulate the LTE expressions

y(tn+1) = y
(P)
n+1 +

5

12
h3y(3)(η1), η1 ∈ [tn, tn + h]

y(tn+1) = y
(C)
n+1 −

1

12
h3y(3)(η2), η2 ∈ [tn, tn + h]

We make the assumption that y(3) does not vary much across [tn, tn + h]. Subtracting the first equation
from the second leads to approximation

|y
(C)
n+1 − y

(P)
n+1| ≈

1

2
h3|y(3)(η)|, η ∈ [tn, tn + h]

and so

|y
(C)
n+1 − y(tn+1)| ≈

1

6
|y

(C)
n+1 − y

(P)
n+1|.

This leads to the following framework for a second-order predictor-corrector scheme:

y
(P)
n+1 = yn + h

2 (3fn − fn−1)

y
(C)
n+1 = yn + h

2

(

f(tn+1 , y
(P)
n+1 + fn

)

ε = 1
6 |y

(C)
n+1 − y

(P)
n+1|
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If ε is too big, then

reduce h and try again.

Else if ε is about right, then

set yn+1 = y
(C)
n+1 and keep h.

Else if ε is too small, then

set yn+1 = y
(C)
n+1 and increase h.

The definitions of “too big,” “about right,” and “too small” are central. Here is one approach. Suppose we
want the global error in the solution snapshots across [t0, tmax] to be less than δ. If it takes nmax steps to
integrate across [t0, tmax], then we can heuristically guarantee this if

nmax
∑

n=1

LTEn ≤ δ.

Thus if hn is the length of the nth step, and

|LTEn| ≤
hnδ

tmax − t0
,

then
nmax
∑

n=1

LTEn ≤

nmax
∑

n=1

hnδ

tmax − t0
≤ δ.

This tells us when to accept a step. But if the estimated LTE is considerably smaller than the threshold,
say

ε ≤
1

10

δh

tmax − t0
,

then it might be worth doubling h.
If the ε is too big, then our strategy is to halve h. But to carry out the predictor step with this step size,

we need f(tn − h/2, yn−1/2) where yn−1/2 is an estimate of y(tn − h/2). “Missing” values in in this setting
can be generated by interpolation or by using (for example) an appropriate Runge-Kutta estimate.

We mention that the Matlab IVP solver ode113 implements an Adams-Bashforth-Moulton predictor-
corrector framework.

Problems

P9.3.3 Derive an estimate for |y
(C)
n+1 − y(tn+1)| for the third-, fourth- and fifth-order predictor-corrector pairs.

M-Files and References

Script Files

ShowTraj Shows family of solutions.
ShowEuler Illustrates Euler method.
ShowFixedEuler Plots error in fixed step Euler for y’=y, y(0)=1.
ShowTrunc Shows effect of truncation error.
EulerRoundoff Illustrates Euler in three-digit floating point.
ShowAB Illustrates FixedAB.
ShowPC Illustrates FixedPC.
ShowRK Illustrates FixedRK.
ShowMatIVPTools Illustrates ode23 and ode45 on a system.
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Function Files

FixedEuler Fixed step Euler method.
ABStart Gets starting values for Adams methods.
ABStep Adams-Bashforth step (order <= 5).
FixedAB Fixed step size Adams-Bashforth.
AMStep Adams-Moulton step (order <= 5).
PCStep AB-AM predictor-corrector Step (order <= 5).
FixedPC Fixed stepsize AB-AM predictor-corrector.
RKStep Runge-Kutta step (order <= 5).
FixedRK Fixed step size Runge-Kutta.
Kepler For solving two-body IVP.
f1 The f function for the model problem y’=y.
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