
Chapter 4

Numerical Integration

§1 The Newton-Cotes Rules

§2 Composite Rules

§3 Adaptive Quadrature

§4 Gauss Quadrature and Spline Quadrature

§5 Matlab’s Quadrature Tools

An m-point quadrature rule Q for the definite integral

I(f, a, b) =

∫ b

a

f(x)dx (4.1)

is an approximation of the form

IQ(f, a, b) = (b − a)

m∑

k=1

wkf(xk). (4.2)

The xk are the abscissas and the wk are the weights. The abscissas and weights define the rule and are chosen
so that IQ(f, a, b) ≈ I(f, a, b). Efficiency essentially depends upon the number of function evaluations. This
is because the time needed to evaluate f at the xi is typically much greater than the time needed to form
the required linear combination of function values. Thus, a six-point quadrature rule is twice as expensive
as a three-point rule.

We start by presenting the the Newton-Cotes family of quadrature rules. These rules are derived by
integrating a polynomial interpolant of the integrand f(x). Composite rules based on a partition of [a, b]
into subintervals are then discussed in §4.2. In a composite rule, a simple rule is applied to each subintegral
and the result summed. The adaptive determination of the partition with error control is presented in §4.3.
The partition is determined recursively using heuristic estimates of the integrand’s behavior. In §4.4 we
discuss the “super accuracte” Gauss quadrature idea and also how to approach the quadrature problem
using splines when the integrand is only known through a discrete set of sample points.

4.1 The Newton-Cotes Rules

One way to derive a quadrature rule Q is to integrate a polynomial approximation p(x) of the integrand
f(x). The philosophy is that p(x) ≈ f(x) implies

1

2 CHAPTER 4. NUMERICAL INTEGRATION

∫ b

a

f(x)dx ≈
∫ b

a

p(x)dx.

(See Figure 4.1.) The Newton-Cotes quadrature rules are obtained by integrating uniformly spaced polyno-
mial interpolants of the integrand. The m-point Newton-Cotes rule (m ≥ 2) is defined by

QNC(m) =

∫ b

a

pm−1(x)dx, (4.3)

0 1 2 3
−1

−0.5

0

0.5

1

f(x)

0 1 2 3
−1

−0.5

0

0.5

1

The Interpolant

m = 4

0 1 2 3
−1

−0.5

0

0.5

1

Integral of f(x)

0 1 2 3
−1

−0.5

0

0.5

1

Integral of Interpolant

Error = 9.324e−002

Figure 4.1 The Newton-Cotes idea

where pm−1(x) interpolates f(x) at

xi = a +
i − 1

m− 1
(b − a), i = 1:m.

If m = 2, then we obtain the trapezoidal rule:

QNC(2) =

∫ b

a

(

f(a) +
f(b) − f(a)

b − a
(x − a)

)

dx

= (b − a)

(
1

2
f(a) +

1

2
f(b)

)

.

If m = 3 and c = (a + b)/2, then we obtain the Simpson rule:

QNC(3) =

∫ b

a

f(a) +

f(c) − f(a)

c − a
(x − a) +

f(b) − f(c)
b − c

− f(c) − f(a)
c − a

b − a
(x − a)(x − c)

dx

=
b − a

6

(

f(a) + 4f

(
a + b

2

)

+ f(b)

)

.

From these low-degree examples, it appears that a linear combination of f-evaluations is obtained upon
expansion of the right-hand side in (4.3).

4.1. THE NEWTON-COTES RULES 3

4.1.1 Derivation

For general m, we proceed by substituting the Newton representation

pm−1(x) =

m∑

k=1

(

ck

k−1∏

i=1

(x − xi)

)

into (4.3):

QNC(m) =

∫ b

a

pm−1(x)dx =

m∑

k=1

ck

∫ b

a

(
k−1∏

i=1

(x − xi)

)

dx.

If we set x = a + sh, where h = (b − a)/(m − 1), then this transforms to

QNC(m) =

∫ b

a

pm−1(x)dx = h

∫ m−1

0

pm−1(a + sh)ds =

m∑

k=1

ckhkSmk,

where

Smk =

∫ m−1

0

(
k−1∏

i=1

(s − i + 1)

)

ds.

The ck are divided differences. Because of the equal spacing, they have a particularly simple form in terms
of the fi, as was shown in §2.4.1. For example,

c1 = f1

c2 = (f2 − f1)/h

c3 = (f3 − 2f2 + f1)/(2h2)

c4 = (f4 − 3f3 + 3f2 − f1)/(3!h3).

Recipes for the Smk can also be derived. Here are a few examples:

Sm1 =
∫m−1

0
1 · ds = (m − 1)

Sm2 =
∫m−1

0 sds = (m − 1)2/2

Sm3 =
∫m−1

0
s(s − 1)ds = (m − 1)2(m− 5/2)/3

Sm4 =
∫m−1

0
s(s − 1)(s − 2)ds = (m − 1)2(m− 3)2/4

Using these tabulations we can readily derive the weights for any particular m-point rule. For example, if
m = 4, then

S41 = 3 S42 = 9/2 S43 = 9/2 S44 = 9/4.

Thus,

QNC(4) = S41c1h + S42c2h
2 + S43c3h

3 + S44c4h
4

= 3f1h +
9

2

f2 − f1

h
h2 +

9

2

f3 − 2f2 + f1

2h2
h3 +

9

4

f4 − 3f3 + 3f2 − f1

6h3
h4

=
3h

8
(f1 + 3f2 + 3f3 + f4)

= (b − a)(f1 + 3f2 + 3f3 + f4)/8

showing that [1 3 3 1]/8 is the weight vector for QNC(4).

4 CHAPTER 4. NUMERICAL INTEGRATION

4.1.2 Implementation

For convenience in subsequent computations, we “package” the Newton-Cotes weight vectors in the following
function:

function w = NCWeights(m)

% w = NCWeights(m)

%

% w is a column m-vector consisting of the weights for the m-point Newton-Cotes rule.

% m is an integer that satisfies 2 <= m <= 11.

if m==2

w=[1 1]’/2;

elseif m==3

w=[1 4 1]’/6;

elseif m==4

w=[1 3 3 1]’/8;

elseif m==5

w=[7 32 12 32 7]’/90;

:

end

Notice that the weight vectors are symmetric about their middle in that w(1:m) = w(m: − 1:1).

Turning now to the evaluation of QNC(m) itself, we see from

QNC(m) = (b − a)

m∑

i=1

wifi = (b − a)
[

w1 · · · wm

]

f(x1)
...

f(xm)

that it is a scaled inner product of the weight vector w and the vector of function values. Therefore, we
obtain

function numI = QNC(f,a,b,m)

% m-point Newton-Cotes quadrature across the interval [a b].

% f is a handle that points to a function of the form f(x) where x is a

% scalar. f must be defined on [a,b] and it must return a column vector if

% x is a column vector.

% m is an integer that satisfies 2 <= m <= 11.

% numI is the m-point Newton-Cotes approximation of the integral of f from

% a to b.

w = NCweights(m);

x = linspace(a,b,m)’;

fvals = f(x);

numI = (b-a)*(w’*fvals);

We mention that QNC(2) and QNC(3) are referred to as the trapezoidal rule and Simpson’s rule respectively.

Let us see how well QNC does when it is applied to the problems

I1 =

∫ 1

0

e−xdx = 1 − e−1

and

I2 =

∫ 1

0

e−20xdx = (1 − e−20)/20

Setting Q1 = QNC(@(x) exp(-x),0,1,m) and Q2 = QNC(@(x) exp(-20*x),0,1,m) we find

4.1. THE NEWTON-COTES RULES 5

m |Q1 - I1| |Q2 - I2|

2 0.0518191617571635 0.4500000011336345

3 0.0002131211751050 0.1166969337330916

4 0.0000950324202655 0.0754778453850014

5 0.0000003161797660 0.0301796546189490

6 0.0000001782491539 0.0208012561376684

7 0.0000000003894651 0.0080385105198381

8 0.0000000002389524 0.0056365811921616

9 0.0000000000003593 0.0019118765020265

10 0.0000000000002303 0.0013508599157407

11 0.0000000000000003 0.0003884845483225

We need a theory that explains why the results for I2 are so inferior!

4.1.3 Newton-Cotes Error

How good are the Newton-Cotes rules? Since they are based on the integration of a polynomial interpolant,
the answer clearly depends on the quality of the interpolant. Here is a result for Simpson’s rule:

Theorem 4 If f(x) and its first four derivatives are continuous on [a, b], then
∣
∣
∣
∣
∣

∫ b

a

f(x)dx − QNC(3)

∣
∣
∣
∣
∣
≤ (b − a)5

2880
M4,

where M4 is an upper bound on |f(4)(x)| on [a, b].

Proof Suppose

p(x) = c1 + c2(x − a) + c3(x − a)(x − b) + c4(x − a)(x − b)(x − c)

is the Newton form of the cubic interpolant to f(x) at the points a, b, c, and d. If c is the midpoint of the
interval [a, b], then

∫ b

a

(c1 + c2(x − a) + c3(x − a)(x − b)) dx = QNC(3),

because the first three terms in the expression for p(x) specify the quadratic interpolant of (a, f(a)), (c, f(c)),
and (b, f(b)), on which the three-point Newton-Cotes rule is based. By symmetry we have

∫ b

a

(x − a)(x − b)(x − c)dx = 0

and so
∫ b

a

p(x)dx = QNC(3).

The error in p(x) is given by Theorem 2,

f(x) − p(x) =
f(4)(ηx)

24
(x − a)(x − b)(x − c)(x − d)

and thus,
∫ b

a

f(x)dx − QNC(3) =

∫ b

a

(
f(4)(ηx)

24
(x − a)(x − b)(x − c)(x − d)

)

dx.

Taking absolute values, we obtain
∣
∣
∣
∣
∣

∫ b

a

f(x)dx − QNC(3)

∣
∣
∣
∣
∣
≤ M4

24

∫ b

a

|(x − a)(x − b)(x − c)(x − d)| dx.

6 CHAPTER 4. NUMERICAL INTEGRATION

If we set d = c, then (x − a)(x − b)(x − c)(x − d) is always negative and it is easy to verify that

∫ b

a

|(x − a)(x − b)(x − c)(x − d)| dx =
(b − a)5

120

and so ∣
∣
∣
∣
∣

∫ b

a

f(x)dx − QNC(3)

∣
∣
∣
∣
∣
≤ M4

24

(b − a)5

120
=

M4

2880
(b − a)5. �

Note that if f(x) is a cubic polynomial, then f(4) = 0 and so Simpson’s rule is exact. This is somewhat
surprising because the rule is based on the integration of a quadratic interpolant.

In general, it can be shown that

∫ b

a

f(x)dx = QNC(m) + cmf(d+1)(η)

(
b − a

m − 1

)d+2

, (4.4)

where cm is a small constant, η is in the interval [a, b], and

d =

{

m − 1 if m is even

m if m is odd
.

Notice that if m is odd, as in Simpson’s rule, then an extra degree of accuracy results. See P4.1.3 for details.
From (4.4), we see that knowledge of f(d+1) is required in order to say something about the error in

QNC(m). For example, if |f(d+1)(x)| ≤ Md+1 on [a, b], then

∣
∣
∣
∣
∣
QNC(m) −

∫ b

a

f(x)dx

∣
∣
∣
∣
∣
≤ |cm|Md+1

(
b − a

m − 1

)d+2

. (4.5)

The following function can be used to return this upper bound given the interval [a, b], m, and the appropriate
derivative bound:

function error = QNCError(a,b,m,M)

% The error bound for the m-point Newton-Cotes rule when applied to

% the integral from a to b of a function f(x). It is assumed that

% a<=b and 2<=m<=11. M is an upper bound for the (d+1)-st derivative of the

% function f(x) on [a,b] where d = m if m is odd, and m-1 if m is even.

if m==2, d=1; c = -1/12;

elseif m==3, d=3; c = -1/90;

elseif m==4, d=3; c = -3/80;

elseif m==5, d=5; c = -8/945;

elseif m==6, d=5; c = -275/12096;

elseif m==7, d=7; c = -9/1400;

elseif m==8, d=7; c = -8183/518400;

elseif m==9, d=9; c = -2368/467775;

elseif m==10, d=9; c = -173/14620;

else d=11; c = -1346350/326918592;

end

error = abs(c*M*((b-a)/(m-1))^(d+2));

From this we see that if you are contemplating an even m rule, then the (m−1)-point rule is probably just as
good and requires one less function evaluation. The following table summarizes the error when the m-point
Newton-Cotes rule is applied to

I =

∫ π/2

0

sin(x)dx.

4.2. COMPOSITE RULES 7

m QNC(@sin,0,pi/2,m) Actual Error Error Bound

2 0.7853981633974483 2.146e-01 3.230e-01

3 1.0022798774922104 2.280e-03 3.321e-03

4 1.0010049233142790 1.005e-03 1.476e-03

5 0.9999915654729927 8.435e-06 1.219e-05

6 0.9999952613861667 4.739e-06 6.867e-06

7 1.0000000258372355 2.584e-08 3.714e-08

8 1.0000000158229039 1.582e-08 2.277e-08

9 0.9999999999408976 5.910e-11 8.466e-11

10 0.9999999999621675 3.783e-11 5.417e-11

11 1.0000000000001021 1.021e-13 1.460e-13

Problems

P4.1.1 Let C(x) be the cubic Hermite interpolant of f(x) at x = a and b. Show that

Z b

a
C(x)dx =

h

2
(f(a) + f(b)) +

h2

12
(f ′(a) − f ′(b)).

This is sometimes called the corrected trapezoidal rule. Write a function CorrTrap(f,fp,a,b) that computes this value. Here,
f and fp are handles that reference the integrand and its derivative respectively. The error in this rule has the form ch4f (4)(η).
Determine c (approximately) through experimentation.

P4.1.2 This problem is about the computation of the closed Newton-Cotes weights by solving an appropriate linear system.
Observe that the m-point rule should compute the integral

Z 1

0
xi−1dx =

1

i

exactly for i = 1:m. For this calculation, the abscissas are given by xj = (j−1)/(m−1), i = 1:m. Thus the weights w1, . . . ,wm

satisfy

w1xi−1
1 + w2xi−1

2 + · · · + wmxi−1
m =

1

i

for i = 1:m. This defines a linear system whose solution is the weight vector for the m-point rule. Write a function
MyNCweights(m) that computes the weights by setting up the preceding linear system and solving for w using the backslash
operation. Compare the output of NCweights and MyNCweights for m = 2:11.

P4.1.3 (a) Suppose m is odd and that c = (a + b)/2. Show that QNC(m) is exact if applied to

I =

Z b

a
(x − c)kdx

when k is odd. (b) If p(x) has degree m, then it can be written in the form p(x) = q(x) + α(x− c)m where q has degree m − 1
and α is a scalar. Use this fact with c = (a + b)/2 to show that if m is odd, then QNC(m) is exact when applied to

I =

Z b

a
p(x)dx.

P4.1.4 Augment ShowQNCError so that it also prints a table of errors and error bounds for the integral

I =

Z 1

0

dx

1 + 10x
.

Explain clearly the derivative bounds that are used.

4.2 Composite Rules

We will not be happy with the error bound (4.5) unless b − a is sufficiently small. Fortunately, there is an
easy way to organize the computation of an integral so that small-interval quadratures prevail.

8 CHAPTER 4. NUMERICAL INTEGRATION

d t t t d t t t d t t t d t t t d

x = a x = b

︸ ︷︷ ︸

∆

︸ ︷︷ ︸

∆

︸ ︷︷ ︸

∆

︸ ︷︷ ︸

∆

Figure 4.2 Function evaluations in Q
(4)
NC(5)

4.2.1 Derivation

If we have a partition
a = z1 < z2 < · · · < zn+1 = b,

then
∫ b

a

f(x)dx =

n∑

i=1

∫ zi+1

zi

f(x)dx.

If we apply QNC(m) to each of the subintegrals, then a composite quadrature rule based on QNC(m) results.
For example, if ∆i = zi+1 − zi and zi+1/2 = (zi + zi+1)/2, i = 1:n, then

Q =
n∑

i=1

∆i

6

(
f(zi) + 4f(zi+1/2) + f(zi+1)

)
(4.6)

is a composite Simpson rule. In general, if z houses a partition of [a, b] and f is a handle that references a
function, then

numI=0

for i=1:length(z)-1

numI = numI + QNC(@f,z(i),z(i+1),m);

end

assigns to numI the composite m-point Newton-Cotes estimate of the integral based on the partition housed
in z.

In §4.4 we will show how to automate the choice of a good partition. In the remainder of this section,
we focus on composite rules that are based on uniform partitions. In these rules, n ≥ 1,

zi = a + (i − 1)∆, ∆ =
b − a

n

for i = 1:n + 1, and the composite rule evaluation has the form

numI = 0;

Delta=(b-a)/n;

for i=1:n

numI = numI + QNC(@f,a+(i-1)*Delta,a+i*Delta,m);

end

We designate the estimate produced by this quadrature rule by Q
(n)
NC(m). The computation is a little inefficient

because it involves n − 1 extra function evaluations and a for-loop. The rightmost f-evaluation in the ith
call to QNC is the same as the leftmost f-evaluation in the i+1st call. Figure 4.2 depicts the situation in the
four-subinterval, five-point rule case.

To avoid redundant f-evaluation and a for-loop with repeated function calls, it is better not to apply
QNC to each of the n subintegrals. Instead, we precompute all the required function evaluations and store
them in a single column vector fval(1:n(m-1)+1). The linear combination that defines the composite rule

is then calculated. In the preceding Q
(4)
NC(5) example, the 17 required function evaluations are assembled in

fval(1:17). If w is the weight vector for QNC(5), then

Q
(4)
NC(5) = ∆

(
wT fval(1:5) + wT fval(5:9) + wT fval(9:13) + wT fval(13:17)

)
.

4.2. COMPOSITE RULES 9

From this we conclude that Q
(n)
NC(m) is a summation of n inner products, each of which involves the weight

vector w of the underlying rule and a portion of the fval-vector. The following function is organized around
this principle:

function numI = CompQNC(f,a,b,m,n)

% Composite Newton-Cotes rule for the integral of f from a to b.

% f is a handle that points to a function of the form f(x) where x is a

% scalar. f must be defined on [a,b] and it must return a column vector if x is a

% column vector.

% m is an integer that satisfies 2 <= m <= 11.

% n is a positive integer.

% numI is the composite m-point Newton-Cotes approximation of the integral of f

% from a to b with n equal length subintervals.

w = NCweights(m);

x = linspace(a,b,n*(m-1)+1)’;

f = f(x);

numI = 0; first = 1; last = m;

for i=1:n

%Add in the inner product for the i-th subintegral.

numI = numI + w’*f(first:last);

first = last;

last = last+m-1;

end

numI = Delta*numI;

4.2.2 Error

Let us examine the error. Suppose Qi is the m-point Newton-Cotes estimate of the ith subintegral. If this
rule is exact for polynomials of degree d, then using (4.4) we obtain

∫ b

a

f(x)dx =

n∑

i=1

∫ zi+1

zi

f(x)dx =

n∑

i=1

(

Qi + cmf(d+1)(ηi)

(
zi+1 − zi

m − 1

)d+2
)

.

By definition

Q
(n)
NC(m) =

n∑

i=1

Qi

and

zi+1 − zi = ∆ =
b − a

n
.

Moreover, it can be shown that

1

n

n∑

i=1

f(d+1)(ηi) = f(d+1)(η)

for some η ∈ [a, b] and so

∫ b

a

f(x)dx = Q
(n)
NC(m) + cm

(
b − a

n(m− 1)

)d+2

nf(d+1)(η). (4.7)

If |f(d+1)(x)| ≤ Md+1 for all x ∈ [a, b], then

∣
∣
∣
∣
∣
Q

(n)
NC(m) −

∫ b

a

f(x)dx

∣
∣
∣
∣
∣
≤
[

|cm|Md+1

(
b − a

m − 1

)d+2
]

1

nd+1
. (4.8)

Comparing with (4.5), we see that the error in the composite rule is the error in the corresponding “simple”
rule divided by nd+1 . Thus, with m fixed it is possible to exercise error control by choosing n sufficiently

10 CHAPTER 4. NUMERICAL INTEGRATION

large. For example, suppose that we want to approximate the integral with a uniformly spaced composite
Simpson rule so that the error is less than a prescribed tolerance tol. If we know that the fourth derivative
of f is bounded by M4, then we choose n so that

1

90
M4

(
b − a

2

)5
1

n4
≤ tol.

To keep the number of function evaluations as small as possible, n should be the smallest positive integer
that satisfies

n ≥ (b − a)
4

√

M4(b − a)

2880 · tol .

The script file ShowCompQNC displays the error properties of the composite Newton-Cotes rules for three
different integrands. (See Figure 4.3.)

0 5 10 15 20 25 30 35 40

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

m = 3

m = 5

m = 7

Example 1. QNC(m,n) error for integral of sin from 0 to pi/2

n = number of subintervals.

E
rr

o
r

in
 Q

N
C

(m
,n

)

Figure 4.3 Error in composite Newton-Cotes rules

Problems

P4.2.1 Write a function error = CompQNCerror(a,b,m,DerBound,n) that returns an upper bound for the error in the uniformly
spaced composite m-point Newton-Cotes quadrature rule applied to the integral of f(x) from a to b. Use errNC.

P4.2.2 Rewrite CompQNC so that only one call to the integrand function is required.

P4.2.3 Write a function: n = nBest(a,b,m,DerBound,tol) that returns an integer n such that the error bound for Q
(n)
NC(m) is

less than tol.

P4.2.4 Let C(x) be the piecewise cubic Hermite interpolant of of f(x) on [a, b]. Develop a uniformly spaced composite rule
based on this interpolant.

P4.2.5 What can you say about the approximate value of T2/T1, where T1 is the time required to compute a certain integral
using a composite m-point Newton-Cotes rule with n subintervals, and T2 is the time required to compute the same integral
using a composite 2m-point Newton-Cotes rule with 10n subintervals.

4.3 Adaptive Quadrature

Uniformly spaced composite rules that are exact for degree d polynomials are efficient if f(d+1) is uniformly
behaved across [a, b]. However, if the magnitude of this derivative varies widely across the interval of
integration, then the error control process discussed in §4.2 may result in an unnecessary number of function
evaluations. This is because n is determined by an interval-wide derivative bound Md+1 . In regions where
f(d+1) is small compared to this value, the subintervals are (possibly) much shorter than necessary. Adaptive
quadrature methods address this problem by “discovering” where the integrand is ill behaved and shortening
the subintervals accordingly.

4.3. ADAPTIVE QUADRATURE 11

4.3.1 An Adaptive Newton-Cotes Procedure

To obtain a good partition of [a, b], we need to be able to estimate error. That way the partition can be
refined if the error is not small enough. One idea is to use two different quadrature rules. The difference
between the two predicted values of the integral could be taken as a measure of their inaccuracy:

function numI = AdaptQNC(f,a,b,...)

Compute the integral from a to b in two ways. Call the values A1 and A2

and assume that A2 is better.

Estimate the error in A2 based on |A1 − A2|.
If the error is sufficiently small, then

numI = A2;

else

mid = (a+b)/2;

numI = AdaptQNC(f,a,mid,...) + AdaptQNC(f,mid,b,...);

end

This divide-and-conquer framework is similar to the one we developed for adaptive piecewise linear approx-
imation.

The filling in of the details begins with the development of a method for estimating the error. Fix m and

set A1 = Q
(1)
NC(m) and A2 = Q

(2)
NC(m). Thus A1 is the “simple” m-point rule estimate and A2 is the two-interval,

m-point rule estimate. If these rules are exact for degree d polynomials, then it can be shown that

I = A1 +

[

cmf(d+1)(η1)

(
b − a

m− 1

)d+2
]

(4.9)

I = A2 +

[

cmf(d+1)(η2)

(
b − a

m− 1

)d+2
]

1

2d+1
(4.10)

where η1 and η2 are in the interval [a, b]. We now make the assumption f(d+1)(η1) = f(d+1)(η2). This is
reasonable if f(d+1) does not vary much on [a, b]. (The shorter the interval, the more likely this is to be the
case.) Thus

I = A1 + C

and

I = A2 + C/2d+1,

where

C =

[

cmf(d+1)(η1)

(
b − a

m − 1

)d+2
]

.

By subtracting these two equations for I from each other and solving for C, we get

C =
A2 − A1

1 − 1
2d+1

and so

|I − A2| ≈ |A1 − A2|
2d+1 − 1

.

Thus, the discrepancy between the two estimates divided by 2d+1 − 1 provides a reasonable estimate of the
error in A2. If our goal is to produce an estimate of I that has absolute error tol or less, then the recursion
may be organized as follows:

12 CHAPTER 4. NUMERICAL INTEGRATION

function numI = AdaptQNC(f,a,b,m,tol)

% f is a handle that points to a function of the form f(x) where x is a

% scalar. f must be defined on [a,b] and it must return a column vector if x is a

% column vector.

% a,b are real scalars, m is an integer that satisfies 2 <= m <=11, and

% tol is a positive real.

% numI is a composite m-point Newton-Cotes approximation of the

% integral of f(x) from a to b, where the subinterval partition is

% determined adaptively.

% Estimates based on composite rule with 1 and 2 subintervals...

A1 = CompQNC(f,a,b,m,1);

A2 = CompQNC(f,a,b,m,2);

% The error estimate...

d = 2*floor((m-1)/2)+1;

error = (A2-A1)/(2^(d+1)-1);

% Accept of reject A2?

if abs(error) <= tol

% A2 is acceptable

numI = A2+error;

else

% Subdivide the problem...

mid = (a+b)/2;

numI = AdaptQNC(f,a,mid,m,tol/2) + AdaptQNC(f,mid,b,m,tol/2);

end

If the heuristic estimate of the error is greater than tol, then two recursive calls are initiated to obtain
estimates

QL ≈
∫ mid

a

f(x)dx = IL

and

QR ≈
∫ b

mid

f(x)dx = IR

that satisfy

|IL − QL| ≤ tol/2

and
|IR − QR| ≤ tol/2.

Setting Q = QL + QR, we see that

|I − Q| = |(IL − QL) + (IR − QR)| ≤ |IL − QL| + |IR − QR| ≤ (tol/2) + (tol/2) = tol.

Insight into the economies that are realized by the adaptive framework can be obtained by applying
AdaptQNC to the integral of the built-in function

humps(x) =
1

0.01 + (x − 0.3)2
+

1

0.04 + (x − 0.9)2
− 6

from 0 to 1. The tables in Figure 4.4 and Figure 4.5 report on the number of required function evaluations
associated with the call AdaptQNC(@humps,0,1,m,tol) for various choices of m and tol. These values would
be much higher if we used CompQNC(f,a,b,m,n) to attain the same level of accuracy. This is because higher
derivatives of humps are modest in size except near x = .3 and x = .9. To handle these “rough spots” we
would need a large number of subintervals, i.e., a large value for n in the call to CompQNC.

4.3. ADAPTIVE QUADRATURE 13

m = 3 m = 5 m = 7 m = 9

tol = .01 26 14 6 2

tol = .001 54 22 6 2

tol = .0001 94 30 14 10

tol = .00001 174 46 26 14

Figure 4.4 Number of Scalar f-evaluations required by QNC(@humps,0,1,m,tol)

m = 3 m = 5 m = 7 m = 9

tol = .01 104 98 60 26

tol = .001 216 154 60 26

tol = .0001 376 210 140 130

tol = .00001 696 322 260 182

Figure 4.5 Number of Vector f-evaluations required by QNC(@humps,0,1,m,tol)

Problems

P4.3.1 The one-panel midpoint rule Q1 for the integral

I =

Z b

a
f(x)dx

is defined by

Q1 = (b − a)f

„

a + b

2

«

.

The two-panel midpoint rule Q2 for I is given by

Q2 =
b − a

2

„

f

„

3a + b

4

«

+ f

„

a + 3b

4

««

.

Using the heuristic |I−Q2| ≤ |Q2−Q1|, write an efficient Matlab adaptive quadratureroutine of the form Adapt(f,a,b,tol,...)

that returns an estimate of I that is accurate to within the tolerance given by tol. You may extend the parameter list, and you
may use nargin as required. You may ignore the possibility of infinite recursion.

P4.3.2 A number of efficiency improvements can be made to AdaptQNC. A casual glance at AdaptQNC reveals two sources
of redundant function evaluations: First, each function evaluation required in the assignment to A1 is also required in the
assignment to A2. Second, the recursive calls could (but do not) make use of previous function evaluations. In addressing these
deficiencies, you are to follow these ground rules:

• A call of the form AdaptQNC1(@f,a,b,m,tol)must produce the same value as a call of the form AdaptQNC(@f,a,b,m,tol).

• No global variables are allowed.

To “transmit” appropriate function values in the recursive calls, you will want to design AdaptQNC1 so that it has an “optional”
sixth argument fValues. By making this argument optional, the same five-parameter calls at the top level are permitted.

P4.3.3 An implementation y = MyF(x) of the function f(x) has the property that it returns f(xi) in yi for i = 1:n where n is
the length of x. Assume that the cost of a MyF evaluation is constant and independent of the length of the input vector x. We
want to compute

I =

Z b

a
f(x)dx

with specified accuracy. Explain why it might be more efficient to use a composite trapezoidal rule with uniform length
subintervals than an adaptive trapezoidal rule if we have information about the second derivative of f .

P4.3.4 Assume that MyF is a given implementation of the function f(x) and that f has positive period T . Write an efficient
Matlab script for computing the integral

I =

Z b

a
f(x)dx

with absolute error ≤ 10−6. Assume that a and b are given and make effective use of the Matlab quadrature function quad.
The absolute error is no bigger than tol.

14 CHAPTER 4. NUMERICAL INTEGRATION

P4.3.5 Let Qn be the equal spacing composite trapezoidal rule:

Qn = h

„

1

2
f(x1) + f(x2) + · · · + f(xn−1) +

1

2
f(xn)

«

h =
b − a

n − 1
,

where x = linspace(a, b, n) and we assume that n ≥ 2. Assume that there is a constant C (independent of n), such that

I =

Z b

a
f(x)fx = Qn + Ch2.

(a) Give an expression for |I − Q2n| in terms of |Q2n − Qn|. (b) Write an efficient function Q = TrapRecur(f,a,b,tol that
returns in Q the value of Q2k+1 , where k is the smallest positive integer so that |I − Q2k+1 | is smaller than the given positive
tolerance tol.

P4.3.6 Assume that the function f(x) is available and define

φ(z) =

Z z

−z
f(x)dx.

Using quad, show how to compute an array phiVals(1:100) with the property that φ(k) is assigned to phiVals(k) for k=1:100.

P4.3.7 Give a solution procedure for computing

I =

Z b

a

„Z x

a
f(x, y)dy

«

dx,

where f(x,y) is a given. All integrals in your method must be computed using quad. Clearly define the functions that are
required by your method. Note: The built-in Matlab function dblquad can be used to evaluate double integrals of the form

I =

Z b

a

Z d

c
f(x, y)dxdy,

but this does not help in this problem.

4.4 Gauss Quadrature and Spline Quadrature

We discuss two other approaches to the quadrature problem. Gauss quadrature rules are of great interest
because they optimize accuracy for a given number of f-evaluations. They also have merit in certain prob-
lems where the integrand has singularities. In situations where the function evaluations are experimentally
determined, spline quadrature has a certain appeal.

4.4.1 Gauss Quadrature

In the Newton-Cotes framework, the integrand is sampled at regular intervals across [a, b]. In the Gauss
quadrature framework, the abscissas are positioned in such a way that the rule is correct for polynomials of
maximal degree.

A simple example clarifies the main idea. Let us try to determine weights w1 and w2 and abscissas x1

and x2 so that

w1f(x1) + w2f(x2) =

∫ 1

−1

f(x)dx

for polynomials of degree 3 or less. This is plausible since there are four parameters to choose (w1, w2, x1,
x2) and four constraints obtained by forcing the rule to be exact for the functions 1, x, x2, and x3:

w1 + w2 = 2

w1x1 + w2x2 = 0

w1x
2
1 + w2x

2
2 = 2/3

w1x
3
1 + w2x

3
2 = 0

By multiplying the second equation by x2
1 and subtracting it from the fourth equation we get w2x2(x

2
1−x2

2) =
0, and so x2 = −x1. It follows from the second equation that w1 = w2 and thus, from the first equation,
w1 = w2 = 1. From the third equation, x2

1 = 1/3 and so x1 = −1/
√

3 and x2 = 1/
√

3. Thus, for any f(x)
we have ∫ 1

−1

f(x)dx ≈ f(−1/
√

3) + f(1/
√

3).

4.4. GAUSS QUADRATURE AND SPLINE QUADRATURE 15

This is the two-point Gauss-Legendre rule.
The m-point Gauss-Legendre rule has the form

QGL(m) = w1f(x1) + · · ·+ wmf(xm),

where the wi and xi are chosen to make the rule exact for polynomials of degree 2m− 1. One way to define
these 2m parameters is by the 2m nonlinear equations

w1x
k
1 + w2x

k
2 + · · ·+ wmxk

m =
1 − (−1)k+1

k + 1
, k = 0:2m− 1.

The kth equation is the requirement that the rule

w1f(x1) + · · ·+ wmf(xm) =

∫ 1

−1

f(x)dx

be exact for f(x) = xk. It turns out that this system has a unique solution, which we encapsulate in the
following function for the cases m = 2:6:

function [w,x] = GLweights(m)

% [w,x] = GLWeights(m)

% w is a column m-vector consisting of the weights for the m-point Gauss-Legendre rule.

% x is a column m-vector consisting of the abscissae.

% m is an integer that satisfies 2 <= m <= 6.

w = ones(m,1);

x = ones(m,1);

if m==2

w(1) = 1.000000000000000; w(2) = w(1);

x(1) = -0.577350269189626; x(2) = -x(1);

elseif m==3

:

end

The Gauss-Legendre rules

QGL(m) = w1f(x1) + · · ·+ wmf(xm) ≈
∫ 1

−1

f(x)dx

are not restrictive even though they pertain to integrals from −1 to 1. By a change of variable, we have

∫ b

a

f(x)dx =
b − a

2

∫ 1

−1

g(x)dx,

where

g(x) = f

(
a + b

2
+

b − a

2
x

)

,

and so

b − a

2

(

w1f

(
a + b

2
+

b − a

2
x1

)

+ · · ·+ wmf

(
a + b

2
+

b − a

2
xm

))

≈
∫ b

a

f(x)dx.

This gives

16 CHAPTER 4. NUMERICAL INTEGRATION

function numI = QGL(f,a,b,m)

% f is a handle that references a function of the form f(x) that

% is defined on [a,b]. f should return a column vector if x is a column vector.

% a,b are real scalars.

% m is an integer that satisfies 2 <= m <= 6.

% numI is the m-point Gauss-Legendre approximation of the

% integral of f(x) from a to b.

[w,x] = GLWeights(m);

fvals = f((b-a)/2)*x + ((a+b)/2)*ones(m,1));

numI = ((b-a)/2)*w’*fvals;

It can be shown that ∣
∣
∣
∣
∣

∫ b

a

f(x)dx − QGL(m)

∣
∣
∣
∣
∣
≤ (b − a)2m+1(m!)4

(2m + 1)[(2m)!]3
M2m,

where M2m is a constant that bounds |f2m(x)| on [a, b]. The script file GLvsNC compares the QNC(m) and
QGL(m) rules when they are applied to the integral of sin(x) from 0 to π/2:

m NC(m) GL(m)

--

2 0.7853981633974483 0.9984726134041148

3 1.0022798774922104 1.0000081215555008

4 1.0010049233142790 0.9999999771971151

5 0.9999915654729927 1.0000000000395670

6 0.9999952613861668 0.9999999999999533

Notice that for this particularly easy problem, QGL(m) has approximately the accuracy of QNC(2m).

It is possible to formulate an adaptive quadrature procedure that is based on a Gauss-Legendre rule.
However, the “weird” location of the abscissae creates a problem. The f-evaluations that are required
when we apply an m-point rule across [a, b] are not shared by the m-point rules applied to the half-interval
problems. The Gauss-Kronrod framework circumvents this problem. The basic idea is to work with a pair
of rules that share f-evaluations. The (15,7) Gauss-Kronrod procedure, works with a 15-point rule

∫ 1

−1

f(x)dx ≈ QGK(15) =

15∑

k=1

ω
(15)
k f(x

(15)
k)

and a 7-point rule,
∫ 1

−1

f(x)dx ≈ QGK(7) =

7∑

k=1

ω
(7)
k f(x

(7)
k).

The key connection between x(15) and x(7) is this:

x(7) = x(15)(2:2:15).

See Figure 4.x. Moreover, there is a heuristic argument that says

∣
∣
∣
∣

∫ 1

−1

f(x)dx − QGK(15)

∣
∣
∣
∣
≈ 200|QGK(15) − QGK(7)|1.5. (4.11)

The demo function ShowGK affirms this result.
One can formulate an adaptive procedure based on these two rules that use these facts. We compute

QGK(15) and get QGK(7) “for free” because of the shared f-evaluations. If the discrepancy between the two
rules is too large, then we subdivide the problem and repeat the process on each half-interval. The Matlab

procedure quadgk is based on this idea.

4.4. GAUSS QUADRATURE AND SPLINE QUADRATURE 17

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

The 15−point rule

The 7−point rule

Figure 4.6 Abscissa location for the (15,7) Gauss-Kronrod Pair

Problems

P4.4.1 If QGL(m) is the m-point Gauss-Legendre estimate for

I =

Z b

a
f(x)dx,

then it can be shown that

|I − QGL(m) | ≤
(b − a)2m+1(m!)4

(2m + 1)[(2m)!]3
M2m ≡ Em,

where the constant M2m satisfies |f (2m)(x)| ≤ M2m for all x ∈ [a, b]. The following questions apply to the case when
f(x) = ecx, where c > 0. Assume that a < b. (a) Give a good choice for M2m. (b) Give an expression for Em+1/Em. (c) Write
a Matlab script that determines the smallest positive integer m so that Em is less than tol.

P4.4.2 Write a function numI = CompQGL(f,a,b,m,n) that approximates the integral of a function from a to b by applying the
m-point Gauss-Legendre rule on n equal-length subintervals of [a, b].

P4.4.3 Develop an addaptive quadrature procedure numI = AdapkGK(f,a,b,tol) that is based on the (15,7) Gauss-Kronrod
pair and the error heuristic (4.11).

4.4.2 Spline Quadrature

Suppose S(x) is a cubic spline interpolant of (xi, yi), i = 1:n and that we wish to compute

I =

∫ xn

x1

S(x)dx.

If the ith local cubic is represented by

qi(x) = ρi4 + ρi,3(x − xi) + ρi,2(x − xi)
2 + ρi,1(x − xi)

3,

then

∫ xi+1

xi

qi(x)dx = ρi,4hi +
ρi,3

2
h2

i +
ρi,2

3
h3

i +
ρi,1

4
h4

i ,

where hi = xi+1 − xi. By summing these quantities from i = 1:n − 1, we obtain the sought-after spline
integral:

function numI = SplineQ(x,y)

% Integrates the spline interpolant of the data specified by the

% column n-vectors x and y. It is a assumed that x(1) < ... < x(n)

% and that the spline is produced by the Matlab function spline.

% The integral is from x(1) to x(n).

18 CHAPTER 4. NUMERICAL INTEGRATION

S = spline(x,y);

[x,rho,L,k] = unmkpp(S);

sum = 0;

for i=1:L

% Add in the integral from x(i) to x(i+1).

h = x(i+1)-x(i);

subI = h*(((rho(i,1)*h/4 + rho(i,2)/3)*h + rho(i,3)/2)*h + rho(i,4));

sum = sum + subI;

end

numI = sum;

The script file ShowSplineQ uses this function to produce the following estimates for the integral of sine
from 0 to π/2:

m Spline Quadrature

5 1.0001345849741938

50 0.9999999990552404

500 0.9999999999998678

Here, the spline interpolates the sine function at x = linspace(0,pi/2,m).

Problems

P4.4.4 Modify SplineQ so that a four-argument call SplineQ(x,y,a,b) returns the integral of the spline interpolant from a to
b. Assume that x1 ≤ a ≤ b ≤ xn.

P4.4.5 Let a(t) denote the acceleration of an object at time t. If v0 is the object’s velocity at t = 0, then the velocity at time
t is prescribed by

v(t) = v0 +

Z t

0
a(τ)dτ.

Likewise, if x0 is the position at t = 0, then the position at time t is given by

x(t) = x0 +

Z t

0
v(τ)dτ.

Now suppose that we have snapshots a(ti) of the acceleration at times ti, i = 1:m, t1 = 0. Assume that we know the initial
position x0 and velocity v0. Our goal is to estimate position from this data. Spline quadrature will be used to approximate the
preceding integrals. Let Sa(t) be the not-a-knot spline interpolant of the acceleration data (ti, a(ti)), i = 1:m, and define

ṽ(t) = v0 +

Z t

0
Sa(τ)dτ.

Let Sv(t) be the not-a-knot spline interpolant of the data (ti, ṽ(ti)), i = 1:m, and define

x̃(t) = x0 +

Z t

0
Sv(τ)dτ.

The spline interpolant Sx(t) of the data (ti, x̃(ti)) is then an approximation of the true position. Write a function

function Sx = PosVel(a,t,x0,v0)}

%

% t is an m-vector of equally spaced time values with t(1) = 0, m>=2.

% a is an m-vector of accelerations, a(i) = acceleration at time t(i).

% x0 and v0 are the position and velocity at t=0

%

% Sx the pp-representation of a spline that approximates position.

Try it out on the data t = linspace(0,50,500), with a(t) = 10e−t/25 sin(t). However, before you turn the a vector over to
PosVel, contaminate it with noise: a = a + .01*randn(size(a)). Produce a plot of the exact and estimated positions across
[0,50] and a separate plot of x(t) − Sx(t) across [0,50]. Also print the value of Sx(t) at t = 50. Repeat with m = 50 instead of
500. Use the Matlab spline function.

4.5. MATLAB’S QUADRATURE TOOLS 19

P4.4.6 Assume that we have a vectorized implementation f.m of a positive-valued function f(x) and that x is a given column
n-vector with x1 < ... < xn. (a) Write a Matlab fragment that sets up a column n-vector q with the property that

˛

˛

˛

˛

qi −

Z xi

x1

f(x)dx

˛

˛

˛

˛

≤ tol

for i = 1:n. Assume that tol is a given positive tolerance. Make effective use of quad. (By setting the relative error tolerance
to zero, quad will return an approximation of the integral that satisfies the absolute error tolerance.) (b) Assume that the array
q has been successfully computed in (a). Making effective use of spline, ppval, and the idea of inverse interpolation, show how
to estimate x∗ so that

Z x∗

x1

f(x) =
1

2

Z xn

x1

f(x)dx.

P4.4.7 Let (x1, y1), . . . , (xn, yn) be given points in the plane. Let di be the straight-line distance between (xi, yi) and
(xi+1, yi+1), i = 1:n − 1. Set ti = d1 + · · · + di−1, i = 1:n. Suppose Sx(t) is a spline interpolant of (t1, x1), . . . , (tn, xn) and
that Sy(t) is a spline interpolant of (t1, y1), . . . , (tn, yn). It follows that the curve Λ = {(Sx(t), Sy(t)) : t1 ≤ t ≤ tn} is smooth
and passes through the n points. Write a Matlab function [Sx,Sy,L] = Arc(x,y) that returns the two splines interpolants (in
pp-form) and the length of Λ, i.e.,

L =

Z tn

t1

q

[S′

x(t)]2 + [S′

y(t)]2dt.

Use quad for the integral with the default tolerance. You will have to set up an integrand function that accesses the piecewise
quadratic functions S′

x(t) and S′

y (t). Write a script that displays the curve Λ where the input points are prescribed by

x = [3 2 1 2 4 5 4 3 2 4 5 5 3];

y = [7 6 5 4 3 2 1 1 2 4 5 6 7];

Print the curve length in the title of the plot.

4.5 Matlab’s Quadrature Tools

Consider the function f(x) = humps(x) where humps is the built-in Matlab function

humps(x) =
1

(x − .3)2 + .01
+

1

(x − .9)2 + .04
− 6.

This function’s higher derivatives are large near x = .3 and x = .9:

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

100

f(x) = humps(x)

The function quad can be used to approximate the integral of this function from 0 to 1:

>> Q = quad(@humps,0,1)

Q = 29.858326128427638

20 CHAPTER 4. NUMERICAL INTEGRATION

The number of f-evaluations can be obtained by supplying a second output parameter:

>> [Q,fevals] = quad(@humps,0,1)

Q = 29.858326128427638

fevals = 145

Unless it is told otherwise, quad aims to compute the required integral with absolute error bounded by
.000001. The error tolerance can be modified:

>> [Q,fevals] = quad(@humps,0,1,10^-12)

Q = 29.858325395498067

fevals = 2321

The function quad implements an adaptive version of the composite Simpson rule. See §4.4. If high accuracy
is required, then it is sometimes more economical to use the Matlab quadrature function quadl:

>> [Q,fevals] = quadl(@humps,0,1,10^-12)

Q = 29.858325395498671

fevals = 1608

The function ShowQUADs(f,a,b) approximates I(f, a, b) and can be used to experiment with these two
quadrature procedures for various choices of error tolerance. ShowQUADs(@sin,0,pi) tells us that quadl is
to be preferred for very smooth integrands like f(x) = sin(x):

quad quadl

tol Approximation f-evals Approximation f-evals

1.0e-003 1.999993496535 13 1.999999977471 18

1.0e-006 1.999999996398 33 1.999999977471 18

1.0e-009 1.999999999999 129 2.000000000000 48

1.0e-012 2.000000000000 497 2.000000000000 48

On the other hand, ShowQuads(@(x) sin(1./x),.01,1) reveals that for nasty integrands like sin(1/x) it is
better to use a low-order rule like quad, especially for modest tolerances:

quad quadl

tol Approximation f-evals Approximation f-evals

1.0e-003 0.463673444706 25 0.504011796906 138

1.0e-006 0.504041285733 237 0.503981893171 558

1.0e-009 0.503981892714 981 0.503981893175 1338

1.0e-012 0.503981893175 3985 0.503981893175 3648

The function quadgk offers greater control over error (absolute or relative) and can report back an
estimate of the error if required. A call of the form

[Q,est] = quadgk(@f,a,b,’AbsTol’,tol1,’RelTol’,tol2)

attempts to return a value in Q that satisfies

|I(f, a, b)− Q| ≤ max{AbsTol,RelTol}.

If relative error is critical, then set tol1=0. If absolute error is the concern, set tol2 = 0. In either case,
the estimate returned in est is an estimate of the absolute error. If quadgk spots a problem with its error
control, then it may suggest an increase in the value of MaxIntervalCount which permits the procedure to
get a more accurate answer by evaluating f and more points. In this case you can try again with a response
of t he form

4.5. MATLAB’S QUADRATURE TOOLS 21

[Q,est] = quadgk(@f,a,b,’AbsTol’,tol1,’RelTol’,tol2,’MaxIntervalCount’,BiggerValue)

Here are some results when quadgk is used to compute

I =

∫ 1

0

100 sin

(
1

x

)

dx

with BiggerValue = 100000:

Result Via Error AbsTol RelTol

quadgk Estimate

50.40654795 0.00061442 0.0010 0.0000

50.40465490 0.03100950 0.0000 0.0010

50.40670252 0.00007224 0.0001 0.0000

50.40658290 0.00430233 0.0000 0.0001

In some cases, quadgk can handle endpoint singularities. For example,

Q = quadgk(@(x) 1./sqrt(x),0,1)

Q = 1.999999999999763

The procedure can also accommodate infinite endpoints as in

I =
1√
2π

∫ +∞

−∞

e−(x−µ)2/(2σ2) dx.

Thus,

mu = 1;

sigma = 3;

Q = quadgk(@(x) exp(-((x-mu).^2/(2*sigma^2)))/(sigma*sqrt(2*pi)),-inf,inf)

Q = 1.000000000146726

thereby affirming that the area under the normal distribution N(µ, σ) equals one.

Problems

P4.5.1 Consider the function

I(α) = (2 + sin(10α))

Z 2

0
xα sin

„

α

2 − x

«

dx

Write a script that confirms the fact that

max
0≤α≤5

I(α) = I(.7859336743...)

Make effective use of Matlab’s quadrature software.
P4.5.2 It turns out that

limε→0

Z 1

ε

1

x
· cos

„

ln(x)

x

«

dx = .3233674316...

Write the most efficient script you can that confirms this result. Make effective use of Matlab’s quadrature software.

22 CHAPTER 4. NUMERICAL INTEGRATION

Script Files

ShowNCError Illustrates NCerror.
ShowCompQNC Illustrates CompQNC on three examples.
ShowAdapts Illustrates AdaptQNC.
GLvsNC Compares Gauss-Legendre and Newton-Cotes rules.
ShowSplineQ Illustrates SplineQ.
ShowGK Illustrates the (15,7) Gauss-Kronrod rule.

Function Files

ShowQuads Illustrates quad, quadl, and quadgk.
ShowNCIdea Displays the idea behind the Newton-Cotes rules.
NCWeights Constructs the Newton-Cotes weight vector.
QNC The simple Newton-Cotes rule.
NCError Error in the simple Newton-Cotes rule.
CompQNC Equally-spaced, composite Newton-Cotes rule.
AdaptQNC Adaptive Newton-Cotes quadrature.
SpecHumps The humps function with function call counters.
GLWeights Constructs the Gauss-Legendre weight vector.
QGL The simple Gauss-Legendre rule.
SplineQ Spline quadrature.

References

P. Davis and P. Rabinowitz (1984). Methods of Numerical Integration, 2nd Ed., Academic Press, New York.

G.H. Golub and J.M. Ortega (1993). Scientific Computing: An Introduction with Parallel Computing,
Academic Press, Boston.

A. Stroud (1972). Approximate Calculation of Multiple Integrals, Prentice Hall, Englewood Cliffs, NJ.

