CS 4210: Final Exam Solution Guide

December 12, 2014

Problem 1 20 points 12.7
Problem 2 15 points 10.8
Problem 3 20 points 13.1
Problem 4 15 points 10.9
Problem 5 10 points 7.3
Problem 6 20 points 18.3

73.1

Total score distribution based on 50% for assignments (factorings best 6 of 7), 20% for
midterm, and 30% for final:

90-95 : xxXxXX
85-89 : XXXXXXXX
80-84 : XXXXXX
75-79 : XXXXXXXX
70-74 : xx

65-69 : xXXXX
50-64 : xxX



1.(a) Consider the initial value problem (IVP) y = f(y,t), y(to) = yo. The local truncation
error (LTE) of the AB2 method

h
Yk+1 = Yk + 5(3fk — fr-1)

is O(h?). What does this mean?

It means that if y = y(tx) and yr_1 = y(tk—1) [2 points| then

y(ths1) — yesa| = O(R?) [3 points]

(b) The LTE of the AB4 method
h
Yert = Ykt oy (55f (x> tr) — 59f (Yn—1,th—1) + 37 f(Yr—2, tr—2) — 9f (Yr—3,tr—3))

is O(h®). To achieve a given level of accuracy, does it follow that one can take much longer
time steps with the AB4 method compared to the AB2 method?

No. The LTE for AB2 involves y®(t) while that for AB4 involves y®)(¢). The latter
derivative may be much more ill-behaved nullifying the h’-to-h® advantage.

[5 points] You have to talk about higher derivatives



(c) What are the implications if at some point during the AB4 solution process it is decided
that the step length A must be halved?

The AB4 method requires an approximate solution at the current time ¢, and also at t. — h,
t.—2h, and t. — 3h. If step size is halved then it is necessary to generate an approximations
to both y(t. — h/2) and y(t. — 3h/2). The corresponding f-evaluations are also required. [5
points]

The problem is not about what happens in future time steps or reasons why it was necessary
to halve h. That is why points off if you just say ”smaller steps means more f-evals but a
reduction in error”. No one said we live with the reduced h forever. But some points were
given for intelligent chat.

(d) Some IVP solvers work better on stiff problems than others. Explain by briefly discussing
constraints on the selection of h for the Euler and backwards Euler methods when they are
applied to the problem the y = —100y. FYI,

Euler: Y+l = Yk + hf(yk,tk)
Backwards Euler: g1 = g+ hf (ke o)

Euler: yri1 = yr — 100hy, = (1 — 100h)yx To capture the required decay, must have h <
1/100.

Backwards Euler: yry1 = yr—100hyrs1 = yr/(1+100h). Regardless of h, we get the required
decay. 2 points for writing down the Euler and backwards Euler recipes and 3 points for
what they say about h selection.



2. Consider the boundary value problem
d2
)+ g(@)u(e) = r(e), u(a) = v, ulb) = u

and assume that {By(z),..., By+1(z)} is a B-spline basis with breakpoints at a + (k — 1)h,
h=(0b-a)/(n—1), k= 0mn+ 1. In the method of collocation we seek an approximate
solution of the form

Explain how this leads to a linear system of equations with the property that each equation
involves only a few of the unknowns ay, ..., Q1.

At a collocation point ., we have the linear equation

n+1

> (B (we) + q(xe) Bj(e)) oy = ()

=0

At most 4 of the Bj(z.) values are nonzero because of local support. Same comment for
boundary value equations. (Actually just 3 unknowns per equation if the collaction points
are breakpoints.)

10 points for an equation that clearly show that the underlying equations are linear in the
a’s. You can’t just say ”substitute @ into the BVP

5 points for connecting the local support of the B; to the sparsity of the system.

-3 if you have some h*’s in your equations. They only show up when you relate B to B so
if your answer was not in terms of B,, this was another chain rule misunderstanding.



3(a) Is it possible to interpolate the data (x1,v1),..., (%n, yn) With a piecewise degree-5
polynomial ¢(x) with the property that ¢*)(z) is continuous for k& = 0,1, 2, 3,47 Hint. How
many “degrees of freedom” are there and how many constraints?

Each local quintic has 6 coefficients so there are 6(n — 1) degrees of freedom. [5 points for
this]

At x5, .., 2, 1 We require continuity in ¢ (z) for k = 0,1,2,3,4. Thus, there are 5(n — 2)
constraints arising from continuity requirements and n interpolation requirements. Thus,
6n — 10 constraints. [5 points for this]

2-3 points if you act as if there is a single quintic.

Note, you can’t look at a single local quintic and conclude “no” because 6 < 5+ 5.

(b) If the polynomial p,_i(x) has degree (n — 1) and interpolates a function f(z) at a =
1 < x9< -+ <x, =Db, then

™ (n)

n!

f(x) = poa(z) + (x—a1)-- (2 —zn) a<n<b

If n is large and the z; are equally-spaced, then the error |f(x) — p,—1(x)| can be large
particularly near the endpoints of [a,b]. (This is the “Runge phenomena”.) Is there a better
way to locate the interpolation points? Is there a better way to interpolate with polynomials
that does not involve high-order derivatives in the error bound?

Cluster the z; towards the endpoints. (The Chebychev distribution) [5 points]
Piecewise polynomial interpolation. [5 points]



4(a) Suppose we have a composite quadrature rule @), that approximates

b
I = / f(z)dx

based on equally spaced subintervals of length h = (b — a)/n. Assume that
I =Q, + ch?

I = Q2n ‘I‘C(g)

Express |I — (Q2,| as a multiple of |@Q,, — Q2,|. The multiple should not involve c.

and

0=Qn— Qon+ (1—1/2°)ch?
I — Qo = ch? /20 = (Qan — Qn)(1/(2F = 1)

[10 points]

(b) Adaptive quadrature procedures are recursive and effectively make use of the idea in
part (a) even though the parameter ¢ is NOT a constant. Explain

In practice ¢ will depend on some higher derivative of f. If the interval [a, b] is small enough,
it is reasonable to assume that that derivative is constant. And with repeated subdivisions,
this will be the case in trouble zones. [5 points]



5. Suppose 7 is a floating point approximation to a nonzero real number x and that

where eps is the unit roundoff. Explain why this means that Z is correct to “full machine
precision.”

For full credit you need to bring up three points.

eps is roughly the distance from 1 to the next largest floating point number. IL.e., it is the
floating point spacing near 1.

Consideration of the mantissa-exponent role in the floating point representation, the spacing
of the floating point numbers in the vicinity of |z| is roughly |z|eps.

|T — x| =~ |z|eps says that the difference between x and 7 is roughly the spacing of the
floating point numbers around . That means that & and x agree to full mantissa prescision.

There are different ways of weaving these facts together and partial credit was given in
accordance with how much your answer reflected knowledge of these basics. There were lots
of answers that were just paraphrases of the question, i.e., ”full machine precision means all
the bits are correct”.



6. We wish to solve the Poisson problem

0*u 0%*u

@‘l’a—yzzo (1)

on a rectangle R with the value of u(x,y) prescribed on the boundary of R.

(a) Using divided differences, show how (1) can be approximated at P = (x.,y.) with a
linear equation that involves the value of v at P and at its four “compass point” neighbors
E=(xc+hye), W= (x.—hy), N=(zc,y. + h), and S = (z¢,y. — h).

N 4u(P) = u(N) = u(E) — u(S) — u(W) = 0
5 points

For the set-up on the following page, 7 points for the matrix and 8 for the right hand side
assuming that your part (a) was correct.



(b) A discrete solution procedure for (1) can be obtained if we apply the divided difference
ideas on a grid of regularly spaced meshpoints. Here is a an example:
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At each “+” we have an unknown u; that is to be an approximation to u(x, y). In the example
we have 12 unknowns and their indices are displayed next to each “+”. The boundary values
at the red “o points are also displayed. Assuming that meshpoint spacing in both the z and
y directions is the same, fill in the matrix and right hand side values of the linear system
that defines the solution vector u(1:12). Entries that are zero can be left blank.
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